Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Hum Reprod ; 38(10): 2028-2038, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37553222

ABSTRACT

STUDY QUESTION: In children affected by rhabdoid tumors (RT), are there clinical, therapeutic, and/or (epi-)genetic differences between those conceived following ART compared to those conceived without ART? SUMMARY ANSWER: We detected a significantly elevated female predominance, and a lower median age at diagnosis, of children with RT conceived following ART (RT_ART) as compared to other children with RT. WHAT IS KNOWN ALREADY: Anecdotal evidence suggests an association of ART with RT. STUDY DESIGN, SIZE, DURATION: This was a multi-institutional retrospective survey. Children with RT conceived by ART were identified in our EU-RHAB database (n = 11/311 children diagnosed between January 2010 and January 2018) and outside the EU-RHAB database (n = 3) from nine different countries. A population-representative German EU-RHAB control cohort of children with RTs conceived without ART (n = 211) (EU-RHAB control cohort) during the same time period was used as a control cohort for clinical, therapeutic, and survival analyses. The median follow-up time was 11.5 months (range 0-120 months) for children with RT_ART and 18.5 months (range 0-153 months) for the EU-RHAB control cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS: We analyzed 14 children with RT_ART diagnosed from January 2010 to January 2018. We examined tumors and matching blood samples for SMARCB1 mutations and copy number alterations using FISH, multiplex ligation-dependent probe amplification, and DNA sequencing. DNA methylation profiling of tumor and/or blood samples was performed using DNA methylation arrays and compared to respective control cohorts of similar age (n = 53 tumors of children with RT conceived without ART, and n = 38 blood samples of children with no tumor born small for gestational age). MAIN RESULTS AND THE ROLE OF CHANCE: The median age at diagnosis of 14 individuals with RT_ART was 9 months (range 0-66 months), significantly lower than the median age of patients with RT (n = 211) in the EU-RHAB control cohort (16 months (range 0-253), P = 0.03). A significant female predominance was observed in the RT_ART cohort (M:F ratio: 2:12 versus 116:95 in EU-RHAB control cohort, P = 0.004). Eight of 14 RT_ART patients were diagnosed with atypical teratoid rhabdoid tumor, three with extracranial, extrarenal malignant rhabdoid tumor, one with rhabdoid tumor of the kidney and two with synchronous tumors. The location of primary tumors did not differ significantly in the EU-RHAB control cohort (P = 0.27). Six of 14 RT_ART patients presented with metastases at diagnosis. Metastatic stage was not significantly different from that within the EU-RHAB control cohort (6/14 vs 88/211, P = 1). The incidence of pathogenic germline variants was five of the 12 tested RT_ART patients and, thus, not significantly different from the EU-RHAB control cohort (5/12 versus 36/183 tested, P = 0.35). The 5-year overall survival (OS) and event free survival (EFS) rates of RT_ART patients were 42.9 ± 13.2% and 21.4 ± 11%, respectively, and thus comparable to the EU-RHAB control cohort (OS 41.1 ± 3.5% and EFS 32.1 ± 3.3). We did not find other clinical, therapeutic, outcome factors distinguishing patients with RT_ART from children with RTs conceived without ART (EU-RHAB control cohort). DNA methylation analyses of 10 tumors (atypical teratoid RT = 6, extracranial, extrarenal malignant RT = 4) and six blood samples from RT_ART patients showed neither evidence of a general DNA methylation difference nor underlying imprinting defects, respectively, when compared to a control group (n = 53 RT samples of patients without ART, P = 0.51, n = 38 blood samples of patients born small for gestational age, P = 0.1205). LIMITATIONS, REASONS FOR CAUTION: RTs are very rare malignancies and our results are based on a small number of children with RT_ART. WIDER IMPLICATIONS OF THE FINDINGS: This cohort of patients with RT_ART demonstrated a marked female predominance, and a rather low median age at diagnosis even for RTs. Other clinical, treatment, outcome, and molecular factors did not differ from those conceived without ART (EU-RHAB control cohort) or reported in other series, and there was no evidence for imprinting defects. Long-term survival is achievable even in cases with pathogenic germline variants, metastatic disease at diagnosis, or relapse. The female preponderance among RT_ART patients is not yet understood and needs to be evaluated, ideally in larger international series. STUDY FUNDING/COMPETING INTEREST(S): M.C.F. is supported by the 'Deutsche Kinderkrebsstiftung' DKS 2020.10, by the 'Deutsche Forschungsgemeinschaft' DFG FR 1516/4-1 and by the Deutsche Krebshilfe 70113981. R.S. received grant support by Deutsche Krebshilfe 70114040 and for infrastructure by the KinderKrebsInitiative Buchholz/Holm-Seppensen. P.D.J. is supported by the Else-Kroener-Fresenius Stiftung and receives a Max-Eder scholarship from the Deutsche Krebshilfe. M.H. is supported by DFG (HA 3060/8-1) and IZKF Münster (Ha3/017/20). BB is supported by the 'Deutsche Kinderkrebsstiftung' DKS 2020.05. We declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.

3.
Fam Cancer ; 22(1): 103-118, 2023 01.
Article in English | MEDLINE | ID: mdl-35856126

ABSTRACT

Kabuki syndrome is a well-recognized syndrome characterized by facial dysmorphism and developmental delay/intellectual disability and in the majority of patients a germline variant in KMT2D is found. As somatic KMT2D variants can be found in 5-10% of tumors a tumor predisposition in Kabuki syndrome is discussed. So far less than 20 patients with Kabuki syndrome and a concomitant malignancy have been published. Here we report on a female patient with Kabuki syndrome and a c.2558_2559delCT germline variant in KMT2D who developed an embryonal rhabdomyosarcoma (ERMS) at 10 years. On tumor tissue we performed DNA-methylation profiling and exome sequencing (ES). Copy number analyses revealed aneuploidies typical for ERMS including (partial) gains of chromosomes 2, 3, 7, 8, 12, 15, and 20 and 3 focal deletions of chromosome 11p. DNA methylation profiling mapped the case to ERMS by a DNA methylation-based sarcoma classifier. Sequencing suggested gain of the wild-type KMT2D allele in the trisomy 12. Including our patient literature review identified 18 patients with Kabuki syndrome and a malignancy. Overall, the landscape of malignancies in patients with Kabuki syndrome was reminiscent of that of the pediatric population in general. Histopathological and molecular data were only infrequently reported and no report included next generation sequencing and/or DNA-methylation profiling. Although we found no strong arguments pointing towards KS as a tumor predisposition syndrome, based on the small numbers any relation cannot be fully excluded. Further planned studies including profiling of additional tumors and long term follow-up of KS-patients into adulthood could provide further insights.


Subject(s)
Abnormalities, Multiple , Rhabdomyosarcoma, Embryonal , Humans , Child , Female , Rhabdomyosarcoma, Embryonal/genetics , Phenotype , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , DNA , Mutation
4.
Oncol Rep ; 48(2)2022 Aug.
Article in English | MEDLINE | ID: mdl-35730629

ABSTRACT

Although chronic myeloid leukemia (CML) can be effectively treated using BCR­ABL1 kinase inhibitors, resistance due to kinase alterations or to BCR­ABL1 independent mechanisms remain a therapeutic challenge. For the latter, the underlying mechanisms are widely discussed; for instance, gene expression changes, epigenetic factors and alternative signaling pathway activation. In the present study, in vitro­CML cell models of resistance against the tyrosine kinase inhibitors (TKIs) imatinib (0.5 and 2 µM) and nilotinib (0.1 µM) with biological replicates were generated to identify novel mechanisms of resistance. Subsequently, genome­wide mRNA expression and DNA methylation were analyzed. While mRNA expression patterns differed largely between biological replicates, there was an overlap of 71 genes differentially expressed between cells resistant against imatinib or nilotinib. Moreover, all TKI resistant cell lines demonstrated a slight hypermethylation compared with native cells. In a combined analysis of 151 genes differentially expressed in the biological replicates of imatinib resistance, cell adhesion signaling, in particular the cellular matrix protein fibronectin 1 (FN1), was significantly dysregulated. This gene was also downregulated in nilotinib resistance. Further analyses showed significant FN1­downregulation in imatinib resistance on mRNA (P<0.001) and protein level (P<0.001). SiRNA­mediated FN1­knockdown in native cells reduced cell adhesion (P=0.02), decreased imatinib susceptibility visible by higher Ki­67 expression (1.5­fold, P=0.04) and increased cell number (1.5­fold, P=0.03). Vice versa, recovery of FN1­expression in imatinib resistant cells was sufficient to partially restore the response to imatinib. Overall, these results suggested a role of cell adhesion signaling and fibronectin 1 in TKI resistant CML and a potential target for novel strategies in treatment of resistant CML.


Subject(s)
Fibronectins , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Cell Adhesion/genetics , Drug Resistance, Neoplasm/genetics , Fibronectins/genetics , Fibronectins/metabolism , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Methylation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , RNA, Messenger/metabolism , Signal Transduction
5.
Epigenetics ; 15(12): 1319-1324, 2020 12.
Article in English | MEDLINE | ID: mdl-32475296

ABSTRACT

Merkel cell carcinoma (MCC) is a very rare, but highly aggressive skin cancer which occurs mainly in elderly patients. MCC cells show an expression pattern of three cell lineages: epithelial, neuroendocrine, and B-cell progenitor. This trilinear expression pattern suggests stemness activity in MCC. The etiopathogenesis of MCC is either linked to the Merkel cell polyomavirus (MCPyV) or in a smaller proportion (20%) to high levels of UV-induced somatic mutations. Both viral presence and accumulation of mutations have been shown to be associated with accelerated DNA methylation Age (DNAmAge) compared to chronological age. The MCC DNAmAge was significantly lower compared to the chronological age, which was irrespective of the viral presence or mutational burden. Although these features indicate some aspects of stemness in MCC cells, gene-expression-based pluripotency testing did not provide evidence for pluripotency of MCC cells.


Subject(s)
Carcinoma, Merkel Cell/genetics , Cellular Senescence , Epigenesis, Genetic , Mutation Accumulation , Aged , Aged, 80 and over , Carcinoma, Merkel Cell/pathology , Carcinoma, Merkel Cell/virology , DNA Methylation , Female , Humans , Male , Merkel cell polyomavirus/pathogenicity , Middle Aged , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/physiology
6.
Blood ; 132(21): 2280-2285, 2018 11 22.
Article in English | MEDLINE | ID: mdl-30282799

ABSTRACT

The WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue notes instances of Burkitt lymphoma/leukemia (BL) with IG-MYC rearrangement displaying a B-cell precursor immunophenotype (termed herein "preBLL"). To characterize the molecular pathogenesis of preBLL, we investigated 13 preBLL cases (including 1 cell line), of which 12 were analyzable using genome, exome, and targeted sequencing, imbalance mapping, and DNA methylation profiling. In 5 patients with reads across the IG-MYC breakpoint junctions, we found evidence that the translocation derived from an aberrant VDJ recombination, as is typical for IG translocations arising in B-cell precursors. Genomic changes like biallelic IGH translocations or VDJ rearrangements combined with translocation into the VDJ region on the second allele, potentially preventing expression of a productive immunoglobulin, were detected in 6 of 13 cases. We did not detect mutations in genes frequently altered in BL, but instead found activating NRAS and/or KRAS mutations in 7 of 12 preBLLs. Gains on 1q, recurrent in BL and preB lymphoblastic leukemia/lymphoma (pB-ALL/LBL), were detected in 7 of 12 preBLLs. DNA methylation profiling showed preBLL to cluster with precursor B cells and pB-ALL/LBL, but apart from BL. We conclude that preBLL genetically and epigenetically resembles pB-ALL/LBL rather than BL. Therefore, we propose that preBLL be considered as a pB-ALL/LBL with recurrent genetic abnormalities.


Subject(s)
Burkitt Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cells, B-Lymphoid/pathology , Proto-Oncogene Proteins c-myc/genetics , V(D)J Recombination , Adolescent , Adult , Aged , Burkitt Lymphoma/diagnosis , Burkitt Lymphoma/pathology , Child , Child, Preschool , DNA Methylation , Female , Gene Rearrangement, B-Lymphocyte , Humans , Male , Middle Aged , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cells, B-Lymphoid/metabolism , Retrospective Studies , Translocation, Genetic , Young Adult
7.
BMC Cancer ; 18(1): 796, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30081852

ABSTRACT

BACKGROUND: ADAMs (a disintegrin and metalloproteinase) have long been associated with tumor progression. Recent findings indicate that members of the closely related ADAMTS (ADAMs with thrombospondin motifs) family are also critically involved in carcinogenesis. Gene silencing through DNA methylation at CpG loci around e.g. transcription start or enhancer sites is a major mechanism in cancer development. Here, we aimed at identifying genes of the ADAM and ADAMTS family showing altered DNA methylation in the development or colorectal cancer (CRC) and other epithelial tumors. METHODS: We investigated potential changes of DNA methylation affecting ADAM and ADAMTS genes in 117 CRC, 40 lung cancer (LC) and 15 oral squamous-cell carcinoma (SCC) samples. Tumor tissue was analyzed in comparison to adjacent non-malignant tissue of the same patients. The methylation status of 1145 CpGs in 51 ADAM and ADAMTS genes was measured with the HumanMethylation450 BeadChip Array. ADAMTS16 protein expression was analyzed in CRC samples by immunohistochemistry. RESULTS: In CRC, we identified 72 CpGs in 18 genes which were significantly affected by hyper- or hypomethylation in the tumor tissue compared to the adjacent non-malignant tissue. While notable/frequent alterations in methylation patterns within ADAM genes were not observed, conspicuous changes were found in ADAMTS16 and ADAMTS2. To figure out whether these differences would be CRC specific, additional LC and SCC tissue samples were analyzed. Overall, 78 differentially methylated CpGs were found in LC and 29 in SCC. Strikingly, 8 CpGs located in the ADAMTS16 gene were commonly differentially methylated in all three cancer entities. Six CpGs in the promoter region were hypermethylated, whereas 2 CpGs in the gene body were hypomethylated indicative of gene silencing. In line with these findings, ADAMTS16 protein was strongly expressed in globlet cells and colonocytes in control tissue but not in CRC samples. Functional in vitro studies using the colorectal carcinoma cell line HT29 revealed that ADAMTS16 expression restrained tumor cell proliferation. CONCLUSIONS: We identified ADAMTS16 as novel gene with cancer-specific promoter hypermethylation in CRC, LC and SCC patients implicating ADAMTS16 as potential biomarker for these tumors. Moreover, our results provide evidence that ADAMTS16 may have tumor suppressor properties.


Subject(s)
ADAMTS Proteins/genetics , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , DNA Methylation , Lung Neoplasms/genetics , Mouth Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , ADAMTS Proteins/metabolism , Biomarkers, Tumor/metabolism , Cell Proliferation , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , CpG Islands , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , HT29 Cells , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mouth Neoplasms/enzymology , Mouth Neoplasms/pathology , Promoter Regions, Genetic , Squamous Cell Carcinoma of Head and Neck/enzymology , Squamous Cell Carcinoma of Head and Neck/pathology
8.
J Med Genet ; 55(7): 497-504, 2018 07.
Article in English | MEDLINE | ID: mdl-29574422

ABSTRACT

BACKGROUND: Genomic imprinting results from the resistance of germline epigenetic marks to reprogramming in the early embryo for a small number of mammalian genes. Genetic, epigenetic or environmental insults that prevent imprints from evading reprogramming may result in imprinting disorders, which impact growth, development, behaviour and metabolism. We aimed to identify genetic defects causing imprinting disorders by whole-exome sequencing in families with one or more members affected by multilocus imprinting disturbance. METHODS: Whole-exome sequencing was performed in 38 pedigrees where probands had multilocus imprinting disturbance, in five of whom maternal variants in NLRP5 have previously been found. RESULTS: We now report 15 further pedigrees in which offspring had disturbance of imprinting, while their mothers had rare, predicted-deleterious variants in maternal effect genes, including NLRP2, NLRP7 and PADI6. As well as clinical features of well-recognised imprinting disorders, some offspring had additional features including developmental delay, behavioural problems and discordant monozygotic twinning, while some mothers had reproductive problems including pregnancy loss. CONCLUSION: The identification of 20 putative maternal effect variants in 38 families affected by multilocus imprinting disorders adds to the evidence that maternal genetic factors affect oocyte fitness and thus offspring development. Testing for maternal-effect genetic variants should be considered in families affected by atypical imprinting disorders.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Beckwith-Wiedemann Syndrome/genetics , Protein-Arginine Deiminases/genetics , Silver-Russell Syndrome/genetics , Apoptosis Regulatory Proteins , Beckwith-Wiedemann Syndrome/pathology , Chromosomes, Human, Pair 11/genetics , DNA Methylation/genetics , Female , Genomic Imprinting/genetics , Germ-Line Mutation/genetics , Humans , Infant, Newborn , Infant, Newborn, Diseases/genetics , Infant, Newborn, Diseases/physiopathology , Maternal Inheritance , Pedigree , Pregnancy , Protein-Arginine Deiminase Type 6 , Silver-Russell Syndrome/physiopathology
9.
Clin Epigenetics ; 9: 111, 2017.
Article in English | MEDLINE | ID: mdl-29046733

ABSTRACT

BACKGROUND: Uniparental disomy of certain chromosomes are associated with a group of well-known genetic syndromes referred to as imprinting disorders. However, the extreme form of uniparental disomy affecting the whole genome is usually not compatible with life, with the exception of very rare cases of patients with mosaic genome-wide uniparental disomy reported in the literature. RESULTS: We here report on a fetus with intrauterine growth retardation and malformations observed on prenatal ultrasound leading to invasive prenatal testing. By cytogenetic (conventional karyotyping), molecular cytogenetic (QF-PCR, FISH, array), and methylation (MS-MLPA) analyses of amniotic fluid, we detected mosaicism for one cell line with genome-wide maternal uniparental disomy and a second diploid cell line of biparental inheritance with trisomy X due to paternal isodisomy X. As expected for this constellation, we observed DNA methylation changes at all imprinted loci investigated. CONCLUSIONS: This report adds new information on phenotypic outcome of mosaic genome-wide maternal uniparental disomy leading to an extreme form of multilocus imprinting disturbance. Moreover, the findings highlight the technical challenges of detecting these rare chromosome disorders prenatally.


Subject(s)
Genomic Imprinting , Ultrasonography, Prenatal/methods , Uniparental Disomy/genetics , Adult , DNA Methylation , Female , Genome-Wide Association Study , Humans , Mosaicism , Pregnancy
10.
Pediatr Blood Cancer ; 64(3)2017 03.
Article in English | MEDLINE | ID: mdl-27786413

ABSTRACT

Deregulation of the epigenome is an important pathogenetic mechanism in acute lymphoblastic leukemia (ALL) with lysine (K)-specific methyltransferase 2A rearrangement (KMT2Ar). We performed array-based DNA methylation profiling of KMT2Ar ALL cells from 26 children in comparison to normal B-cell precursors. Significant changes in DNA methylation in KMT2Ar ALL were identified in 2,545 CpG loci, influenced by age and the translocation partners AFF1 and MLLT1. In KMT2Ar ALL, DNA methylation loss was enriched at enhancers and for certain transcription factor binding sites such as BCL11A, EBF, and MEF2A. In summary, DNA methylation changes in KMT2Ar ALL target enhancers, genes involved in leukemogenesis and normal hematopoiesis, as well as transcription factor networks.


Subject(s)
Biomarkers, Tumor/genetics , DNA Methylation , Gene Expression Profiling , Gene Rearrangement , Histone-Lysine N-Methyltransferase/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , B-Lymphocytes/metabolism , Case-Control Studies , Comparative Genomic Hybridization , Female , Follow-Up Studies , Humans , Infant , Male , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prognosis , Promoter Regions, Genetic/genetics
11.
Epigenomics ; 8(6): 801-16, 2016 06.
Article in English | MEDLINE | ID: mdl-27323310

ABSTRACT

AIM: To characterize the genotypic and phenotypic extent of multilocus imprinting disturbances (MLID). MATERIALS & METHODS: We analyzed 37 patients with imprinting disorders (explorative cohort) for DNA methylation changes using the Infinium HumanMethylation450 BeadChip. For validation, three independent cohorts with imprinting disorders or cardinal features thereof were analyzed (84 patients with imprinting disorders, 52 with growth disorder, 81 with developmental delay). RESULTS: In the explorative cohort 21 individuals showed array-based MLID with each one displaying an Angelman or Temple syndrome phenotype, respectively. Epimutations in ZDBF2 and FAM50B were associated with severe MLID regarding number of affected regions. By targeted analysis we identified methylation changes of ZDBF2 and FAM50B also in the three validation cohorts. CONCLUSION: We corroborate epimutations in ZDBF2 and FAM50B as frequent changes in MLID whereas these rarely occur in other patients with cardinal features of imprinting disorders. Moreover, we show cell lineage specific differences in the genomic extent of FAM50B epimutation.


Subject(s)
DNA Methylation , Developmental Disabilities/genetics , Genomic Imprinting , Case-Control Studies , DNA-Binding Proteins/genetics , Female , Genetic Association Studies , Humans , Male , Phenotype , Proteins/genetics , Sequence Analysis, DNA
12.
Birth Defects Res A Clin Mol Teratol ; 106(8): 724-8, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27223093

ABSTRACT

BACKGROUND: The bladder exstrophy-epispadias complex (BEEC) is characterized by a spectrum of genitourinary malformations. Both classical bladder exstrophy and the most severe phenotype, exstrophy of the cloaca, display omphaloceles, a cardinal anomaly of some disorders caused by altered imprinting. Therefore, we hypothesized that BEEC in some patients could occur on the basis of an undiagnosed imprinting disorder. Such altered imprinting is associated with changes in the parent-of-origin-specific DNA methylation. METHODS: We analyzed the DNA methylation of 54 imprinted loci in 23 selected patients with different BEEC subtypes (epispadias n = 1, classical bladder exstrophy n = 10, exstrophy of the cloaca n = 12) using the Infinium HumanMethylation450 BeadChip. A total of 471,722 not imprinted autosomal CpG loci and 891 imprinted CpG loci were investigated. Findings were corroborated by methylation-specific-multiplex ligation-dependent probe amplification (MS-MLPA) and microsatellite analysis. RESULTS: No significant differences in the DNA methylation of the not imprinted and imprinted CpG were observed depending on subtype of BEEC. Nevertheless, in 1 of the 23 patients who displayed a classical bladder exstrophy, we detected hypomethylation of the imprinted PLAGL1 locus in chromosome 6q24. We verified this hypomethylation by MS-MLPA and showed further the methylation loss to be caused most likely by a mosaic epimutation. CONCLUSION: Considering that it is highly unlikely to detect a PLAGL1 epimutation among 23 individuals given the low incidence of this alteration in the population, our observations further support a link between BEEC and imprinting disorders. Birth Defects Research (Part A) 106:724-728, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bladder Exstrophy/genetics , Cell Cycle Proteins/genetics , Chromosomes, Human, Pair 6/chemistry , DNA Methylation , Epispadias/genetics , Genomic Imprinting , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Adolescent , Bladder Exstrophy/diagnosis , Bladder Exstrophy/pathology , Child , Child, Preschool , Cohort Studies , CpG Islands , Epispadias/diagnosis , Epispadias/pathology , Female , Gene Expression , Genetic Loci , Humans , Male , Microsatellite Repeats , Multiplex Polymerase Chain Reaction
13.
Eur J Hum Genet ; 24(9): 1280-6, 2016 08.
Article in English | MEDLINE | ID: mdl-26839037

ABSTRACT

Beckwith-Wiedemann syndrome (BWS; OMIM #130650) is an overgrowth syndrome caused by different genetic or epigenetic alterations affecting imprinted regions on chromosome 11p15.5. Here we report a family with multiple offspring affected with BWS including giant omphalocoeles in which maternal transmission of a chromosomal rearrangement including an inversion and two deletions leads to hypomethylation of the imprint control region 2 (ICR2). As the deletion includes the promoter and 5' part of the KCNQ1 gene, we suggest that transcription of this gene may be involved in establishing the maternal methylation imprint of the ICR2, which is located in intron 10 of KCNQ1.


Subject(s)
Beckwith-Wiedemann Syndrome/genetics , Chromosome Deletion , Chromosome Inversion , Chromosomes, Human, Pair 11/genetics , DNA Methylation , Genomic Imprinting , Paternal Inheritance , Adult , Beckwith-Wiedemann Syndrome/diagnosis , Female , Humans , KCNQ1 Potassium Channel/genetics , Male , Pedigree
14.
Epigenetics ; 11(3): 216-26, 2016 03 03.
Article in English | MEDLINE | ID: mdl-26890210

ABSTRACT

Gene duplication by retrotransposition, i.e., the reverse transcription of an mRNA and integration of the cDNA into the genome, is an important mechanism in evolution. Based on whole-genome bisulfite sequencing of monocyte DNA, we have investigated the methylation state of all CpG islands (CGIs) associated with a retrocopy (n = 1,319), their genomic environment, as well as the CGIs associated with the ancestral genes. Approximately 10% of retrocopies are associated with a CGI. Whereas almost all CGIs of the human genome are unmethylated, 68% of the CGIs associated with a retrocopy are methylated. In retrocopies resulting from multiple retrotranspositions of the same ancestral gene, the methylation state of the CGI often differs. There is a strong positive correlation between the methylation state of the CGI/retrocopy and their genomic environment, suggesting that the methylation state of the integration site determined the methylation state of the CGI/retrocopy, or that methylation of the retrocopy by a host defense mechanism has spread into the adjacent regions. Only a minor fraction of CGI/retrocopies (n = 195) has intermediate methylation levels. Among these, the previously reported CGI/retrocopy in intron 2 of the RB1 gene (PPP1R26P1) as well as the CGI associated with the retrocopy RPS2P32 identified in this study carry a maternal methylation imprint. In conclusion, these findings shed light on the evolutionary dynamics and constraints of DNA methylation.


Subject(s)
DNA Methylation/genetics , Genome, Human , Genomic Imprinting/genetics , Retinoblastoma Binding Proteins/genetics , Ubiquitin-Protein Ligases/genetics , CpG Islands/genetics , Humans , Introns/genetics , Maternal Inheritance/genetics , Monocytes/metabolism , Promoter Regions, Genetic , Retroelements/genetics , Sequence Analysis, DNA
15.
Methods Mol Biol ; 1381: 75-92, 2016.
Article in English | MEDLINE | ID: mdl-26667456

ABSTRACT

Epigenetic mechanisms including DNA methylation are fundamental for the regulation of gene expression. Epigenetic alterations can lead to the development and the evolution of malignant tumors as well as the emergence of phenotypically different cancer cells or metastasis from one single tumor cell. Here we describe bisulfite pyrosequencing, a technology to perform quantitative DNA methylation analyses, to detect aberrant DNA methylation in malignant tumors.


Subject(s)
DNA Fingerprinting/methods , DNA Methylation , DNA/genetics , Base Sequence , DNA/analysis , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Sulfites/chemistry
16.
Epigenomics ; 7(7): 1089-97, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26541061

ABSTRACT

AIM: To investigate the DNA-methylation levels in the newly described MEG8 differentially methylated region (DMR) in the imprinted cluster in 14q32 in patients with Temple syndrome. PATIENTS & METHODS: We included three patients with Temple syndrome which were studied by Infinium HumanMethylation450 BeadChips, locus-specific bisulfite-pyrosequencing, methylation-specific-MLPA and microsatellite analyses. The tag-CpG of the MEG8-DMR was investigated using the Infinium HumanMethylation450 BeadChip. RESULTS: In all three patients, the identical pattern of DNA-hypermethylation of the MEG8-DMR was observed along with DNA-hypomethylation of the IG-DMR and MEG3-DMR. CONCLUSION: Based on the observed MEG8-DMR DNA-hypermethylation and previously published data, we conclude that DNA-methylation of the MEG3- and MEG8-DMR is functionally dependent on the DNA-methylation pattern of the IG-DMR. The observed combination of epimutations is predicted to be associated with bi-allelic MEG3 and MEG8 expression in individuals with Temple syndrome.


Subject(s)
Chromosomes, Human, Pair 14 , Developmental Disabilities/genetics , Epigenesis, Genetic , RNA Isoforms/genetics , RNA, Long Noncoding/genetics , Uniparental Disomy/genetics , Adolescent , Child , Child, Preschool , CpG Islands , DNA Methylation , Developmental Disabilities/pathology , Female , Genomic Imprinting , High-Throughput Nucleotide Sequencing , Humans , Male , Microsatellite Repeats , Polymerase Chain Reaction , Uniparental Disomy/pathology
17.
Nat Genet ; 47(11): 1316-1325, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26437030

ABSTRACT

Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation-positive Burkitt lymphoma, nine BCL2 translocation-positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas.


Subject(s)
Burkitt Lymphoma/genetics , DNA Methylation , Lymphoma, Follicular/genetics , Mutation , Transcriptome/genetics , Adolescent , Adult , Aged , B-Lymphocytes/metabolism , Cell Line, Tumor , Child , Child, Preschool , Female , Genome, Human/genetics , Germinal Center/metabolism , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction/genetics , Translocation, Genetic , Young Adult
18.
Eur J Med Genet ; 58(8): 419-25, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26003415

ABSTRACT

Despite recent progress in molecular karyotyping and clinical sequencing the cause of intellectual disability in a considerable subset of individuals affected by this phenotype remains elusive. As intellectual disability is also a feature of various imprinting disorders and some monogenic forms of intellectual disability are caused by epigenetic modifiers we hypothesized that changes in DNA methylation might be associated with or even causative in some cases of intellectual disability. Therefore, we performed a DNA methylation analysis of peripheral blood samples from 82 patients with intellectual disability and additional features using the HumanMethylation450 BeadChip. The findings were compared to that of 19 normal controls. Differentially methylated loci were validated by bisulfite pyrosequencing. On a global level, we failed to detect a robust DNA methylation signature segregating individuals with intellectual disability from controls. Using an individual approach, we identified 157 regions showing individual DNA methylation changes in at least one patient. These correlated to 107 genes including genes linked to conditions associated with intellectual disability, namely COLEC11, SHANK2, GLI2 and KCNQ2, as well as imprinted genes like FAM50B and MEG3. The latter was suggestive of an undiagnosed Temple syndrome which could be confirmed by diagnostic tests. Subsequent in-depth analysis of imprinted loci revealed DNA methylation changes at additional imprinted loci, i.e. PPIEL, IGF2R, MEG8 and MCTS2/HM13, in up to five patients. Our findings indicate that imprinting disorders are rare but probably under-diagnosed in patients with intellectual disability and moreover point to DNA methylation changes as potential alternative means to identify deregulated genes involved in the pathogenesis of intellectual disability.


Subject(s)
DNA Methylation , Developmental Disabilities/genetics , Genetic Loci , Genomic Imprinting , Intellectual Disability/genetics , Adolescent , Case-Control Studies , Child , Child, Preschool , Developmental Disabilities/diagnosis , Developmental Disabilities/pathology , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Infant , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Karyotype , Male , Microarray Analysis , Phenotype
19.
PLoS One ; 10(3): e0120463, 2015.
Article in English | MEDLINE | ID: mdl-25785847

ABSTRACT

Treatment with recombinant human growth hormone (rhGH) has been consistently reported to induce transcriptional changes in various human tissues including peripheral blood. For other hormones it has been shown that the induction of such transcriptional effects is conferred or at least accompanied by DNA-methylation changes. To analyse effects of short term rhGH treatment on the DNA-methylome we investigated a total of 24 patients at baseline and after 4-day rhGH stimulation. We performed array-based DNA-methylation profiling of paired peripheral blood mononuclear cell samples followed by targeted validation using bisulfite pyrosequencing. Unsupervised analysis of DNA-methylation in this short-term treated cohort revealed clustering according to individuals rather than treatment. Supervised analysis identified 239 CpGs as significantly differentially methylated between baseline and rhGH-stimulated samples (p<0.0001, unadjusted paired t-test), which nevertheless did not retain significance after adjustment for multiple testing. An individualized evaluation strategy led to the identification of 2350 CpG and 3 CpH sites showing methylation differences of at least 10% in more than 2 of the 24 analyzed sample pairs. To investigate the long term effects of rhGH treatment on the DNA-methylome, we analyzed peripheral blood cells from an independent cohort of 36 rhGH treated children born small for gestational age (SGA) as compared to 18 untreated controls. Median treatment interval was 33 months. In line with the groupwise comparison in the short-term treated cohort no differentially methylated targets reached the level of significance in the long-term treated cohort. We identified marked intra-individual responses of DNA-methylation to short-term rhGH treatment. These responses seem to be predominately associated with immunologic functions and show considerable inter-individual heterogeneity. The latter is likely the cause for the lack of a rhGH induced homogeneous DNA-methylation signature after short- and long-term treatment, which nevertheless is well in line with generally assumed safety of rhGH treatment.


Subject(s)
DNA Methylation/drug effects , Human Growth Hormone/pharmacology , Adolescent , Child , Cohort Studies , Female , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Time Factors
20.
Lab Invest ; 94(8): 927-33, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24933424

ABSTRACT

Alterations in the DNA methylome are characteristic for numerous diseases and a typical hallmark of cancer. Therefore, DNA methylation is currently under investigation in research labs and has also entered diagnostics. Recently, protocols like the BeadChip technology have become commercially available to study DNA methylation in an array format and semiquantitative fashion. However, it is known that fixation of the sample material with formalin prior to BeadChip analysis can affect the results. In this study we compared the influence of fixation on the outcome of BeadChip analysis. From six patients each a lung cancer tissue sample and a corresponding tumor-free lung tissue sample were collected. The samples were separated into three pieces. One piece of each sample was fixed with formalin, another one by the non-cross-linking HOPE technique (Hepes-glutamic acid buffer mediated Organic solvent Protection Effect). Subsequently, both became paraffin embedded. As a reference, the remaining third piece was cryopreserved. In addition we used three adenocarcinoma cell lines (H838, A549, and H1650) to validate the results from patient tissues. We show that using the HOPE technique instead of formalin largely prevents the introduction of formalin-fixation related artifacts. An ANOVA analysis significantly separated HOPE- and cryopreserved from formalin-fixed samples (FDR<0.05), while differences in the methylation data obtained from HOPE-fixed and cryopreserved material were minor. Consequently, HOPE fixation is superior to formalin fixation if a subsequent BeadChip analysis of paraffin-embedded sample material is intended.


Subject(s)
Adenocarcinoma/metabolism , Carcinoma, Squamous Cell/metabolism , DNA Methylation , DNA, Neoplasm/metabolism , Lung Neoplasms/metabolism , Lung/metabolism , Tissue Preservation , Adenocarcinoma/pathology , Aged , Artifacts , Buffers , Carcinoma, Adenosquamous/metabolism , Carcinoma, Adenosquamous/pathology , Carcinoma, Large Cell/metabolism , Carcinoma, Large Cell/prevention & control , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cryopreservation , DNA, Neoplasm/isolation & purification , Female , Glutamic Acid/chemistry , HEPES/chemistry , Humans , Lung/pathology , Lung Neoplasms/pathology , Male , Middle Aged , Tissue Array Analysis , Tissue Fixation
SELECTION OF CITATIONS
SEARCH DETAIL
...