Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 58(22): 2614-2626.e7, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37633272

ABSTRACT

The zebrafish is amenable to a variety of genetic approaches. However, lack of conditional deletion alleles limits stage- or cell-specific gene knockout. Here, we applied an existing protocol to establish a floxed allele for gata2a but failed to do so due to off-target integration and incomplete knockin. To address these problems, we applied simultaneous co-targeting with Cas12a to insert loxP sites in cis, together with transgenic counterscreening and comprehensive molecular analysis, to identify off-target insertions and confirm targeted knockins. We subsequently used our approach to establish endogenously floxed alleles of foxc1a, rasa1a, and ruvbl1, each in a single generation. We demonstrate the utility of these alleles by verifying Cre-dependent deletion, which yielded expected phenotypes in each case. Finally, we used the floxed gata2a allele to demonstrate an endothelial autonomous requirement in lymphatic valve development. Together, our results provide a framework for routine generation and application of endogenously floxed alleles in zebrafish.


Subject(s)
Integrases , Zebrafish , Mice , Animals , Mice, Knockout , Zebrafish/genetics , Alleles , Integrases/genetics , Gene Knockout Techniques
2.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: mdl-33523862

ABSTRACT

Nephrotic syndrome (NS) is a leading cause of chronic kidney disease. We found recessive NOS1AP variants in two families with early-onset NS by exome sequencing. Overexpression of wild-type (WT) NOS1AP, but not cDNA constructs bearing patient variants, increased active CDC42 and promoted filopodia and podosome formation. Pharmacologic inhibition of CDC42 or its effectors, formin proteins, reduced NOS1AP-induced filopodia formation. NOS1AP knockdown reduced podocyte migration rate (PMR), which was rescued by overexpression of WT Nos1ap but not by constructs bearing patient variants. PMR in NOS1AP knockdown podocytes was also rescued by constitutively active CDC42Q61L or the formin DIAPH3 Modeling a NOS1AP patient variant in knock-in human kidney organoids revealed malformed glomeruli with increased apoptosis. Nos1apEx3-/Ex3- mice recapitulated the human phenotype, exhibiting proteinuria, foot process effacement, and glomerulosclerosis. These findings demonstrate that recessive NOS1AP variants impair CDC42/DIAPH-dependent actin remodeling, cause aberrant organoid glomerulogenesis, and lead to a glomerulopathy in humans and mice.


Subject(s)
Adaptor Proteins, Signal Transducing , Kidney Diseases , Nephrotic Syndrome , Podocytes , Actins/genetics , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Formins/genetics , Humans , Kidney Diseases/metabolism , Mice , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Podocytes/metabolism
3.
J Am Soc Nephrol ; 32(3): 580-596, 2021 03.
Article in English | MEDLINE | ID: mdl-33593823

ABSTRACT

BACKGROUND: Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease. METHODS: Homozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. In vitro and in vivo studies determined the functional significance of the mutations identified. RESULTS: Three biallelic variants of the transcriptional regulator PRDM15 were detected in six families with proteinuric kidney disease. Four families with a variant in the protein's zinc-finger (ZNF) domain have additional GAMOS-like features, including brain anomalies, cardiac defects, and skeletal defects. All variants destabilize the PRDM15 protein, and the ZNF variant additionally interferes with transcriptional activation. Morpholino oligonucleotide-mediated knockdown of Prdm15 in Xenopus embryos disrupted pronephric development. Human wild-type PRDM15 RNA rescued the disruption, but the three PRDM15 variants did not. Finally, CRISPR-mediated knockout of PRDM15 in human podocytes led to dysregulation of several renal developmental genes. CONCLUSIONS: Variants in PRDM15 can cause either isolated nephrotic syndrome or a GAMOS-type syndrome on an allelic basis. PRDM15 regulates multiple developmental kidney genes, and is likely to play an essential role in renal development in humans.


Subject(s)
DNA-Binding Proteins/genetics , Hernia, Hiatal/genetics , Microcephaly/genetics , Mutation, Missense , Nephrosis/genetics , Transcription Factors/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Child, Preschool , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/deficiency , Female , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Gene Knockout Techniques , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Models, Molecular , Nephrotic Syndrome/genetics , Podocytes/metabolism , Polymorphism, Single Nucleotide , Pronephros/embryology , Pronephros/metabolism , Protein Stability , Transcription Factors/chemistry , Transcription Factors/deficiency , Xenopus laevis/embryology , Xenopus laevis/genetics , Zinc Fingers/genetics
4.
Am J Hum Genet ; 108(2): 357-367, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33508234

ABSTRACT

Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.


Subject(s)
Carrier Proteins/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Glomerulosclerosis, Focal Segmental/genetics , Intranuclear Space/metabolism , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Nerve Tissue Proteins/genetics , Adult , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Line , Child , Child, Preschool , Codon, Nonsense , Developmental Disabilities/metabolism , Epilepsy/metabolism , Female , Glomerulosclerosis, Focal Segmental/metabolism , Humans , Kidney/metabolism , Male , Mice , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Phenotype , Podocytes/metabolism , Exome Sequencing
5.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32891193

ABSTRACT

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Subject(s)
DNA-Binding Proteins/genetics , Epigenesis, Genetic , Forkhead Transcription Factors/genetics , Mutation , Repressor Proteins/genetics , Transcription Factors/genetics , Urinary Tract/metabolism , Urogenital Abnormalities/genetics , Amphibian Proteins/antagonists & inhibitors , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Case-Control Studies , Child , Child, Preschool , DNA-Binding Proteins/metabolism , Family , Female , Forkhead Transcription Factors/metabolism , Heterozygote , Humans , Infant , Larva/genetics , Larva/growth & development , Larva/metabolism , Male , Mice , Mice, Knockout , Morpholinos/genetics , Morpholinos/metabolism , Pedigree , Protein Binding , Repressor Proteins/metabolism , Transcription Factors/metabolism , Urinary Tract/abnormalities , Urogenital Abnormalities/metabolism , Urogenital Abnormalities/pathology , Exome Sequencing , Xenopus
6.
Kidney Int ; 95(5): 1079-1090, 2019 05.
Article in English | MEDLINE | ID: mdl-31010479

ABSTRACT

Recently, recessive mutations of MAGI2 were identified as a cause of steroid-resistant nephrotic syndrome (SRNS) in humans and mice. To further delineate the pathogenesis of MAGI2 loss of function, we generated stable knockout lines for the two zebrafish orthologues magi2a and magi2b by CRISPR/Cas9. We also developed a novel assay for the direct detection of proteinuria in zebrafish independent of transgenic background. Whereas knockout of magi2b did not yield a nephrotic syndrome phenotype, magi2a-/- larvae developed ascites, periorbital edema, and proteinuria, as indicated by increased excretion of low molecular weight protein. Electron microscopy demonstrated extensive podocyte foot process effacement. As in human SRNS, we observed genotype/phenotype correlation, with edema onset occurring earlier in zebrafish with truncating alleles (5-6 days post fertilization) versus hypomorphic alleles (19-20 days post fertilization). Paradoxically, corticosteroid treatment exacerbated the phenotype, with earlier onset of edema. In contrast, treatment with cyclosporine A or tacrolimus had no significant effect. Although RhoA signaling has been implicated as a downstream mediator of MAGI2 activity, targeting of the RhoA pathway did not modify the nephrotic syndrome phenotype. In the first CRISPR/Cas9 zebrafish knockout model of SRNS, we found that corticosteroids may have a paradoxical effect in the setting of specific genetic mutations.


Subject(s)
Glucocorticoids/pharmacology , Immunosuppressive Agents/pharmacology , Membrane Proteins/genetics , Nephrotic Syndrome/drug therapy , Proteinuria/drug therapy , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified , Cyclosporine/pharmacology , Cyclosporine/therapeutic use , Disease Models, Animal , Disease Progression , Drug Resistance , Gene Knockout Techniques , Glucocorticoids/therapeutic use , Humans , Immunosuppressive Agents/therapeutic use , Monomeric GTP-Binding Proteins/metabolism , Nephrotic Syndrome/genetics , Nephrotic Syndrome/pathology , Podocytes/drug effects , Podocytes/pathology , Proteinuria/genetics , Proteinuria/pathology , Signal Transduction/drug effects , Tacrolimus/pharmacology , Tacrolimus/therapeutic use , Treatment Outcome , Zebrafish , Zebrafish Proteins/metabolism
7.
J Clin Invest ; 128(10): 4313-4328, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30179222

ABSTRACT

Steroid-resistant nephrotic syndrome (SRNS) almost invariably progresses to end-stage renal disease. Although more than 50 monogenic causes of SRNS have been described, a large proportion of SRNS remains unexplained. Recently, it was discovered that mutations of NUP93 and NUP205, encoding 2 proteins of the inner ring subunit of the nuclear pore complex (NPC), cause SRNS. Here, we describe mutations in genes encoding 4 components of the outer rings of the NPC, namely NUP107, NUP85, NUP133, and NUP160, in 13 families with SRNS. Using coimmunoprecipitation experiments, we showed that certain pathogenic alleles weakened the interaction between neighboring NPC subunits. We demonstrated that morpholino knockdown of nup107, nup85, or nup133 in Xenopus disrupted glomerulogenesis. Re-expression of WT mRNA, but not of mRNA reflecting mutations from SRNS patients, mitigated this phenotype. We furthermore found that CRISPR/Cas9 knockout of NUP107, NUP85, or NUP133 in podocytes activated Cdc42, an important effector of SRNS pathogenesis. CRISPR/Cas9 knockout of nup107 or nup85 in zebrafish caused developmental anomalies and early lethality. In contrast, an in-frame mutation of nup107 did not affect survival, thus mimicking the allelic effects seen in humans. In conclusion, we discovered here that mutations in 4 genes encoding components of the outer ring subunits of the NPC cause SRNS and thereby provide further evidence that specific hypomorphic mutations in these essential genes cause a distinct, organ-specific phenotype.


Subject(s)
Nephrotic Syndrome/metabolism , Nuclear Pore Complex Proteins/metabolism , Xenopus Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Line , Disease Models, Animal , Gene Knockdown Techniques , Humans , Nephrotic Syndrome/genetics , Nephrotic Syndrome/pathology , Nuclear Pore Complex Proteins/genetics , Xenopus Proteins/genetics , Xenopus laevis , Zebrafish , Zebrafish Proteins/genetics
8.
Zebrafish ; 15(5): 445-453, 2018 10.
Article in English | MEDLINE | ID: mdl-30102583

ABSTRACT

Zebrafish (Danio rerio) have proven their efficiency as an animal model for genetics and development, but their nutrition and housing requirements continue to elude researchers. Diet and housing density were predicted to affect weight change and reproductive success in 120 days postfertilization (dpf) zebrafish, and growth performance of their progeny. Fish were fed one of four diets, each utilizing a different primary protein source (fish meal [Zeigler™], algae, or insect), while being housed 3.3 or 6.6 fish/L for 3 weeks. Clutch size, viability, and larval development of their progeny were monitored out to 10 dpf. All diets were sent out for proximate nutrient analysis and fatty acid profiles to understand how diet compositions affect reproduction. We found that diet and housing proximity affected adult fish weight and larvae growth; diets composed of higher levels of protein and polyunsaturated fatty acids (specifically arachidonic acid [AA] and eicosapentanoic acid) allowed fish to gain weight and produce healthy larvae. Fish housed at higher densities produced smaller embryos, but larger larvae than those housed at lower densities. These findings imply that significant effects of a modified stimulus are exhibited after relatively short periods.


Subject(s)
Animal Feed , Animal Husbandry/methods , Reproduction , Zebrafish/physiology , Animals , Fertility , Sexual Behavior, Animal , Zebrafish/growth & development
9.
PLoS One ; 13(1): e0191503, 2018.
Article in English | MEDLINE | ID: mdl-29346415

ABSTRACT

Until recently, morpholino oligonucleotides have been widely employed in zebrafish as an acute and efficient loss-of-function assay. However, off-target effects and reproducibility issues when compared to stable knockout lines have compromised their further use. Here we employed an acute CRISPR/Cas approach using multiple single guide RNAs targeting simultaneously different positions in two exemplar genes (osgep or tprkb) to increase the likelihood of generating mutations on both alleles in the injected F0 generation and to achieve a similar effect as morpholinos but with the reproducibility of stable lines. This multi single guide RNA approach resulted in median likelihoods for at least one mutation on each allele of >99% and sgRNA specific insertion/deletion profiles as revealed by deep-sequencing. Immunoblot showed a significant reduction for Osgep and Tprkb proteins. For both genes, the acute multi-sgRNA knockout recapitulated the microcephaly phenotype and reduction in survival that we observed previously in stable knockout lines, though milder in the acute multi-sgRNA knockout. Finally, we quantify the degree of mutagenesis by deep sequencing, and provide a mathematical model to quantitate the chance for a biallelic loss-of-function mutation. Our findings can be generalized to acute and stable CRISPR/Cas targeting for any zebrafish gene of interest.


Subject(s)
Gene Knockdown Techniques , Microcephaly/genetics , Models, Biological , RNA/genetics , Zebrafish/genetics , Animals , CRISPR-Cas Systems , High-Throughput Nucleotide Sequencing , INDEL Mutation , Mutagenesis , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL