Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38728046

ABSTRACT

SnGe4N4O4 was synthesized at high pressure (16 and 20 GPa) and high temperature (1200 and 1500°C) in a large-volume press. Powder X-ray diffraction experiments using synchrotron radiation indicate that the derived samples are mixtures of known and unknown phases. However, the powder X-ray diffraction patterns are not sufficient for structural characterization. Transmission electron microscopy studies reveal crystals of several hundreds of nanometres in size with different chemical composition. Among them, crystals of a previously unknown phase with stoichiometry SnGe4N4O4 were detected and investigated using automated diffraction tomography (ADT), a three-dimensional electron diffraction method. Via ADT, the crystal structure could be determined from single nanocrystals in space group P63mc, exhibiting a nolanite-type structure. This was confirmed by density functional theory calculations and atomic resolution scanning transmission electron microscopy images. In one of the syntheses runs a rhombohedral 6R polytype of SnGe4N4O4 could be found together with the nolanite-type SnGe4N4O4. The structure of this polymorph was solved as well using ADT.

2.
J Am Chem Soc ; 146(14): 9880-9887, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38536667

ABSTRACT

Small molecule structures and their applications rely on good knowledge of their atomic arrangements. However, the crystal structures of these compounds and materials, which are often composed of fine crystalline domains, cannot be determined with single-crystal X-ray diffraction. Three-dimensional electron diffraction (3D ED) is already becoming a reliable method for the structure analysis of submicrometer-sized organic materials. The reduction of electron beam damage is essential for successful structure determination and often prevents the analysis of organic materials at room temperature, not to mention high temperature studies. In this work, we apply advanced 3D ED methods at different temperatures enabling the accurate structure determination of two phases of Pigment Orange 34 (C34H28N8O2Cl2), a biphenyl pyrazolone pigment that has been industrially produced for more than 80 years and used for plastics application. The crystal structure of the high-temperature phase, which can be formed during plastic coloration, was determined at 220 °C. For the first time, we were able to observe a reversible phase transition in an industrial organic pigment in the solid state, even with atomic resolution, despite crystallites being submicrometer in size. By localizing hydrogen atoms, we were even able to detect the tautomeric state of the molecules at different temperatures. This demonstrates that precise, fast, and low-dose 3D ED measurements enable high-temperature studies the door for general in situ studies of nanocrystalline materials at the atomic level.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 2): 105-116, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38488703

ABSTRACT

Traditional X-ray methods are extensively applied to commercial cement samples in order to determine their physical and chemical properties. Powder patterns are routinely used to quantify the composition of these phase mixtures, but structure determination becomes difficult because of reflection overlapping caused by the high number of different crystal structures. The fast-growing 3D electron diffraction technique and its related automated acquisition protocols arise as a potentially very interesting tool for the cement industry, since they enable the fast and systematic acquisition of diffraction data from individual particles. In this context, electron diffraction has been used in the investigation of the different crystalline phases present in various commercial clinkers for cement. Automated data collection procedures and subsequent data processing have enabled the structural characterization of the different crystal structures from which the α'H polymorph of Ca2SiO4 (belite) exhibited satellite reflections. Its average crystal structure has been known since 1971 and satellite reflections have been reported previously, yet the modulation was never fully described by means of the superspace formalism. Here, the incommensurately modulated structure is solved and refined using harmonic and crenel functions in the superspace group Pnma(α00)0ss, showing the potential of 3D electron diffraction for systematic crystallographic characterizations of cement. A full description of the different belite polymorphs is provided considering this modulated structure.

4.
Inorg Chem ; 62(40): 16329-16342, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37756217

ABSTRACT

We report on a nonoxidative topochemical route for the synthesis of a novel indate-based oxyfluoride, LaBaInO3F2, using a low-temperature reaction of Ruddlesden-Popper-type LaBaInO4 with polyvinylidene difluoride as a fluorinating agent. The reaction involves the replacement of oxide ions with fluoride ions as well as the insertion of fluoride ions into the interstitial sites. From the characterization via powder X-ray diffraction (PXRD) and Rietveld analysis as well as automated electron diffraction tomography (ADT), it is deduced that the fluorination results in a symmetry lowering from I4/mmm (139) to monoclinic C2/c (15) with an expansion perpendicular to the perovskite layers and a strong tilting of the octahedra in the ab plane. Disorder of the anions on the apical and interstitial sites seems to be favored. The most stable configuration for the anion ordering is estimated based on an evaluation of bond distances from the ADT measurements via bond valence sums (BVSs). The observed disordering of the anions in the oxyfluoride results in changes in the optical properties and thus shows that the topochemical anion modification can present a viable route to alter the optical properties. Partial densities of states (PDOSs) obtained from ab initio density functional theory (DFT) calculations reveal a bandgap modification upon fluoride-ion introduction which originates from the presence of the oxide anions on the interstitial sites. The photocatalytic performance of the oxide and oxyfluoride shows that both materials are photocatalytically active for hydrogen (H2) evolution.

5.
Inorg Chem ; 62(1): 35-42, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36346925

ABSTRACT

To access porous metal phosphonates, a new V-shaped, rigid, and sterically demanding diphosphonic acid, namely 3,6-diphosphono-9H-carbazole (H4L), was designed and employed in a high-throughput investigation. Screening of different metal salts and subsequent optimization studies resulted in the isolation of two porous metal phosphonates [Cu2(H2O)2(L)]·2H2O (CAU-37) and [Zn6.75(H2O)1.5(HL)2.5(L)1.5]·8H2O (CAU-57). Structure determination was accomplished by electron diffraction and the dehydration behavior of CAU-37 was followed in situ. A rare case of intralayer water de-/adsorption in CAU-37 was found which leads to a cell volume change of 11.9%. Rod-shaped inorganic building units (IBUs) are connected to layers and structural flexibility is due to "accordion-like" structural changes within the layers. In contrast, in CAU-57 a layered IBU is found, which usually results in the formation of dense structures. Due to the shape and rigidity of the linker, the interconnection of the IBUs results in the formation of pores. Water sorption measurements in combination with powder X-ray diffraction data confirmed the reversibility under structural retention.

6.
Sci Rep ; 12(1): 3935, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273241

ABSTRACT

Preventing bacteria from adhering to material surfaces is an important technical problem and a major cause of infection. One of nature's defense strategies against bacterial colonization is based on the biohalogenation of signal substances that interfere with bacterial communication. Biohalogenation is catalyzed by haloperoxidases, a class of metal-dependent enzymes whose activity can be mimicked by ceria nanoparticles. Transparent CeO2/polycarbonate surfaces that prevent adhesion, proliferation, and spread of Pseudomonas aeruginosa PA14 were manufactured. Large amounts of monodisperse CeO2 nanoparticles were synthesized in segmented flow using a high-throughput microfluidic benchtop system using water/benzyl alcohol mixtures and oleylamine as capping agent. This reduced the reaction time for nanoceria by more than one order of magnitude compared to conventional batch methods. Ceria nanoparticles prepared by segmented flow showed high catalytic activity in halogenation reactions, which makes them highly efficient functional mimics of haloperoxidase enzymes. Haloperoxidases are used in nature by macroalgae to prevent formation of biofilms via halogenation of signaling compounds that interfere with bacterial cell-cell communication ("quorum sensing"). CeO2/polycarbonate nanocomposites were prepared by dip-coating plasma-treated polycarbonate panels in CeO2 dispersions. These showed a reduction in bacterial biofilm formation of up to 85% using P. aeruginosa PA14 as model organism. Besides biofilm formation, also the production of the virulence factor pyocyanin in is under control of the entire quorum sensing systems P. aeruginosa. CeO2/PC showed a decrease of up to 55% in pyocyanin production, whereas no effect on bacterial growth in liquid culture was observed. This indicates that CeO2 nanoparticles affect quorum sensing and inhibit biofilm formation in a non-biocidal manner.


Subject(s)
Nanocomposites , Nanoparticles , Anti-Bacterial Agents/pharmacology , Bacteria , Biofilms , Pseudomonas aeruginosa , Pyocyanine , Quorum Sensing , Virulence Factors
7.
Langmuir ; 36(46): 13804-13816, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33171051

ABSTRACT

Thermal decomposition is a promising route for the synthesis of metal oxide nanoparticles because size and morphology can be tuned by minute control of the reaction variables. We synthesized CoO nanooctahedra with diameters of ∼48 nm and a narrow size distribution. Full control over nanoparticle size and morphology could be obtained by controlling the reaction time, surfactant ratio, and reactant concentrations. We show that the particle size does not increase monotonically with time or surfactant concentration but passes through minima or maxima. We unravel the critical role of the surfactants in nucleation and growth and rationalize the observed experimental trends in accordance with simulation experiments. The as-synthesized CoO nanooctahedra exhibit superior electrocatalytic activity with long-term stability during oxygen evolution. The morphology of the CoO particles controls the electrocatalytic reaction through the distinct surface sites involved in the oxygen evolution reaction.

8.
Dalton Trans ; 49(37): 12960-12969, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32936162

ABSTRACT

A newly synthesized microporous zincosilicate THK-2 (estimated structural composition: |(H2O)6.7(C6H13N)0.9|[Li0.5Zn3.1Si32O62.7(OH)9.3]) was characterized by single-crystal electron diffraction using the automated electron diffraction tomography (ADT) approach in combination with powder X-ray diffraction. The lattice constants and space group of as-synthesized THK-2 were a = 2.50377(7) nm, b = 1.43866(4) nm, c = 0.505369(8) nm, and Pccn (no. 56) with orthorhombic symmetry. Because the crystal lattice was almost identical to a hexagonal lattice (), the first several peaks in its powder X-ray diffraction data severely overlapped, which suppressed the structural information to decide the framework topology. In order to overcome this intrinsic difficulty, the structure model of THK-2 was initially obtained by the direct method based on ADT data and refined by the Rietveld method. Its 3-dimensional framework structure was elucidated and it consisted of 4-, 5-, 6-rings of tetrahedral Si and Zn atoms and a one-dimensional straight channel with a 12-ring pore opening. Zn atoms were incorporated into the framework as four-coordinated [ZnO4], although their distribution was confirmed to be disorderly. In the as-synthesized THK-2, the site occupancy of Zn was as low as 0.39; that is, more than 60% of the Zn sites were vacant. Hexamethyleneimine and water molecules were accommodated in the straight channel in a disordered manner. The material was stable upon calcination, and the BET specific surface area and micropore volume of calcined THK-2 were 240.6 m2 g-1 and 0.12 ml g-1, respectively.

9.
IUCrJ ; 7(Pt 3): 522-534, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32431835

ABSTRACT

This study made use of a recently developed combination of advanced methods to reveal the atomic structure of a disordered nanocrystalline zeolite using exit wave reconstruction, automated diffraction tomography, disorder modelling and diffraction pattern simulation. By applying these methods, it was possible to determine the so far unknown structures of the hydrous layer silicate RUB-6 and the related zeolite-like material RUB-5. The structures of RUB-5 and RUB-6 contain the same dense layer-like building units (LLBUs). In the case of RUB-5, these building units are interconnected via additional SiO4/2 tetrahedra, giving rise to a framework structure with a 2D pore system consisting of intersecting 8-ring channels. In contrast, RUB-6 contains these LLBUs as separate silicate layers terminated by silanol/sil-oxy groups. Both RUB-6 and RUB-5 show stacking disorder with intergrowths of different polymorphs. The unique structure of RUB-6, together with the possibility for an interlayer expansion reaction to form RUB-5, make it a promising candidate for interlayer expansion with various metal sources to include catalytically active reaction centres.

10.
Angew Chem Int Ed Engl ; 59(36): 15649-15655, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32453899

ABSTRACT

There are a large number of zeolites, such as ITH, that cannot be prepared in the aluminosilicate form. Now, the successful synthesis of aluminosilicate ITH zeolite using a simple cationic oligomer as an organic template is presented. Key to the success is that the cationic oligomer has a strong complexation ability with aluminum species combined with a structural directing ability for the ITH structure similar to that of the conventional organic template. The aluminosilicate ITH zeolite has very high crystallinity, nanosheet-like crystal morphology, large surface area, fully four-coordinated Al species, and abundant acidic sites. Methanol-to-propylene (MTP) tests reveal that the Al-ITH zeolite shows much higher selectivity for propylene and longer lifetime than commercial ZSM-5. FCC tests show that Al-ITH zeolite is a good candidate as a shape-selective FCC additive for enhancing propylene and butylene selectivity.

11.
Angew Chem Int Ed Engl ; 59(24): 9438-9442, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32065724

ABSTRACT

Helical motifs are common in nature, for example, the DNA double or the collagen triple helix. In the latter proteins, the helical motif originates from glycine, the smallest amino acid, whose molecular confirmation is closely related to acetic acid. The combination of acetic acid with calcium and water, which are also omnipresent in nature, materializing as calcium acetate hemihydrate, was now revealed to exhibit a collagen-like triple helix structure. This calcium salt is observed as efflorescence phase on calcareous heritage objects, like historic Mollusca shells, pottery or marble reliefs. In a model experiment pure calcium acetate hemihydrate was crystallized on the surface of a terracotta vessel. Calcium acetate hemihydrate crystallizes in a surprisingly large unit cell with a volume of 11,794.5(3) Å3 at ambient conditions. Acetate ions bridge neighboring calcium cations forming spiral chains, which are arranged in a triple helix motif.

12.
Chemistry ; 26(10): 2187-2194, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31671223

ABSTRACT

We report the first oxynitride of tin, Sn2 N2 O (SNO), exhibiting a Rh2 S3 -type crystal structure with space group Pbcn. All Sn atoms are in six-fold coordination, in contrast to Si in silicon oxynitride (Si2 N2 O) and Ge in the isostructural germanium oxynitride (Ge2 N2 O), which appear in four-fold coordination. SNO was synthesized at 20 GPa and 1200-1500 °C in a large volume press. The recovered samples were characterized by synchrotron powder X-ray diffraction and single-crystal electron diffraction in the TEM using the automated diffraction tomography (ADT) technique. The isothermal bulk modulus was determined as Bo =193(5) GPa by using in-situ synchrotron X-ray diffraction in a diamond anvil cell. The structure model is supported by DFT calculations. The enthalpy of formation, the bulk modulus, and the band structure have been calculated.

13.
J Am Chem Soc ; 141(45): 18318-18324, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31644275

ABSTRACT

A large amount of zeolite structures are still not synthetically available or not available in the form of aluminosilicate currently. Despite significant progress in the development of predictive concepts for zeolite synthesis, accessing some of these new materials is still challenging. One example is the IWR structure as well. Despite successful synthesis of Ge-based IWR zeolites, direct synthesis of aluminosilicate IWR zeolite is still not successful. In this report we show how a suitable organic structure directing agent (OSDA), through modeling of an OSDA/zeolite cage interaction, could access directly the aluminum-containing IWR structure (denoted as COE-6), which might allow access to new classes of materials and thus open opportunities in valuable chemical applications. The experimental results reveal that the COE-6 zeolites with a SiO2/Al2O3 ratio as low as 30 could be obtained. Very interestingly, the COE-6 zeolite has much higher hydrothermal and thermal stabilities than those of the conventional Ge-Al-IWR zeolite. In methanol-to-propylene (MTP) reaction, the COE-6 zeolite exhibits excellent selectivity for propylene, offering a potential catalyst for MTP reaction in the future.

14.
ACS Cent Sci ; 5(8): 1315-1329, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31482114

ABSTRACT

Crystallography of nanocrystalline materials has witnessed a true revolution in the past 10 years, thanks to the introduction of protocols for 3D acquisition and analysis of electron diffraction data. This method provides single-crystal data of structure solution and refinement quality, allowing the atomic structure determination of those materials that remained hitherto unknown because of their limited crystallinity. Several experimental protocols exist, which share the common idea of sampling a sequence of diffraction patterns while the crystal is tilted around a noncrystallographic axis, namely, the goniometer axis of the transmission electron microscope sample stage. This Outlook reviews most important 3D electron diffraction applications for different kinds of samples and problematics, related with both materials and life sciences. Structure refinement including dynamical scattering is also briefly discussed.

15.
Angew Chem Int Ed Engl ; 58(32): 10995-11000, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31087755

ABSTRACT

Two new zirconium-based metal-organic frameworks with the composition [Zr6 O4 (OH)4 (OAc)6 (BDC)3 ] (CAU-26) and [Zr5 O4 (OH)4 (OAc)4 (BDC)2 ] (CAU-27) are reported, which were synthesized from acetic acid, a rarely utilized but green and sustainable solvent (BDC2- : 1,4-benzenedicarboxylate). Structure determination aided by automated electron diffraction tomography revealed that CAU-26 is composed of layers of well-known {Zr6 O8 } clusters interconnected by terephthalate ions. In contrast CAU-27 exhibits a three-dimensional structure with a so far unknown type of one-dimensional inorganic building unit (IBU), which can be rationalized as condensed polyhedron-sharing chains of {Zr6 O8 } clusters. CAU-26 occurs as an intermediate of the CAU-27 synthesis and can be isolated easily, when reaction temperature and time are decreased. We were also able to synthesize two isoreticular derivatives of CAU-27 with extended linker molecules by implementing 4,4'-biphenyldicarboxylic acid (H2 BPDC) and 5,5'-dicarboxy-2,2'-bipyridine (H2 BIPY). All materials show high thermal and chemical stability as well as permanent microporosity. The excellent stability of CAU-27-BIPY was exploited to synthesize a performant iridium-supported heterogeneous MOF-based catalyst for the direct C-H borylation of arenes.

16.
Science ; 363(6425): 396-400, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30679371

ABSTRACT

As one of the most abundant materials in the world, calcium carbonate, CaCO3, is the main constituent of the skeletons and shells of various marine organisms. It is used in the cement industry and plays a crucial role in the global carbon cycle and formation of sedimentary rocks. For more than a century, only three polymorphs of pure CaCO3-calcite, aragonite, and vaterite-were known to exist at ambient conditions, as well as two hydrated crystal phases, monohydrocalcite (CaCO3·1H2O) and ikaite (CaCO3·6H2O). While investigating the role of magnesium ions in crystallization pathways of amorphous calcium carbonate, we unexpectedly discovered an unknown crystalline phase, hemihydrate CaCO3·½H2O, with monoclinic structure. This discovery may have important implications in biomineralization, geology, and industrial processes based on hydration of CaCO3.

17.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 4): 463-474, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-32830704

ABSTRACT

Electron diffraction tomography (EDT) has gained increasing interest, starting with the development of automated electron diffraction tomography (ADT) which enables the collection of three-dimensional electron diffraction data from nano-sized crystals suitable for ab initio structure analysis. A basic description of the ADT method, nowadays recognized as a reliable and established method, as well as its special features and general applicability to different transmission electron microscopes is provided. In addition, the usability of ADT for crystal structure analysis of single nano-sized crystals with and without special crystallographic features, such as twinning, modulations and disorder is demonstrated.

18.
Inorg Chem ; 57(21): 13640-13652, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30289701

ABSTRACT

Controlling the morphology of noble-metal nanoparticles is mandatory to tune specific properties such as catalytic and optical behavior. Heterodimers consisting of two noble metals have been synthesized, so far mostly in aqueous media using selective surfactants or chemical etching strategies. We report a facile synthesis for Au@Pd and Pd@Au heterodimer nanoparticles (NPs) with morphologies ranging from segregated domains (heteroparticles) to core-shell structures by applying a seed-mediated growth process with Au and Pd seed nanoparticles in 1-octadecene (ODE), which is a high-boiling organic solvent. The as-synthesized oleylamine (OAm) functionalized Au NPs led to the formation of OAm-Au@Pd heteroparticles with a "windmill" morphology, having an Au core and Pd "blades". The multiply twinned structure of the Au seed particles (⌀ ≈ 9-11 nm) is associated with a reduced barrier for heterogeneous nucleation. This leads to island growth of bimetallic Au@Pd heteroparticles with less-regular morphologies. The reaction process can be controlled by tuning the surface chemistry with organic ligands. Functionalization of Au NPs (Ø ≈ 9-11 nm) with 1-octadecanethiol (ODT) led to the formation of ODT-Au@Pd NPs with a closed Pd shell through a strong ligand-metal binding, which is accompanied by a redistribution of the electron density. Experiments with varied Pd content revealed surface epitaxial growth of Pd on Au. For OAm-Pd and ODT-Pd seed particles, faceted, Au-rich domain NPs and impeded core-shell NPs were obtained, respectively. This is related to the high surface energy of the small Pd seed particles (⌀ ≈ 5-7 nm). The metal distribution of all bimetallic NPs was analyzed by extended (aberration-corrected) transmission electron microscopy (HR-TEM, HAADF-STEM, EDX mapping, ED). The Au and Pd NPs, as well as the ODT-Au@Pd and OAm-Pd@Au heteroparticles, catalyze the reduction of 4-nitrophenol to 4-aminophenol with borohydride. The catalytic activity is dictated by the particle structure. OAm-Au@Pd heteroparticles with faceted Au domains had the highest activity because of a mixed Au-Pd surface structure, while ODT-Au@Pd NPs, where the active Au core is covered by a Pd shell, had the lowest activity.

19.
Micron ; 115: 41-49, 2018 12.
Article in English | MEDLINE | ID: mdl-30173001

ABSTRACT

This work addresses aspects for the analysis of industrial relevant materials via transmission electron microscopy (TEM). The complex phase chemistry and structural diversity of these materials require several characterization techniques to be employed simultaneously; unfortunately, different characterization techniques often lack connection to yield a complete and consistent picture. This paper describes a continuous path, starting with the acquisition of 3D diffraction data - alongside classical high-resolution imaging techniques - and linking the structural characterization of hard metal industrial samples with energy-loss fine-structure simulations, quantitative electron energy-loss (EEL) and energy-dispersive X-ray (EDX) spectroscopy. Thereby, the compositional analysis of a MAX phase indicated an offset of the hydrogenic, theoretical sensitivity factors, originating from poorly-adjusted screening factors. In a next step, these results were matched against quantitative compositions and parameters obtained from X-ray spectroscopy data, carried out synchronously with EELS.

20.
Chem Sci ; 9(24): 5467-5478, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-30009015

ABSTRACT

The Ni-metallated porphyrin-based tetraphosphonic acid (Ni-tetra(4-phosphonophenyl)porphyrin, Ni-H8TPPP) was used for the synthesis of highly porous metal phosphonates containing the tetravalent cations Zr4+ and Hf4+. The compounds were thoroughly characterized regarding their sorption properties towards N2 and H2O as well as thermal and chemical stability. During the synthesis optimization the reaction time could be substantially decreased under stirring from 24 to 3 h in glass vials. M-CAU-30, [M2(Ni-H2TPPP)(OH/F)2]·H2O (M = Zr, Hf) shows exceptionally high specific surface areas for metal phosphonates of aBET = 1070 and 1030 m2 g-1 for Zr- and Hf-CAU-30, respectively, which are very close/correspond to the theoretical values of 1180 and 1030 m2 g-1. CAU-30 is always obtained as mixtures with one mol ZrO2/HfO2 per formula unit as proven by TEM, electron diffraction, TG and elemental analysis. Hence experimentally derived specific surface areas are 970 and 910 m2 g-1, respectively. M-CAU-30 is chemically stable in the pH range 0 to 12 in HCl/NaOH and thermally up to 420 °C in air as determined by variable-temperature powder X-ray diffraction (VT-PXRD). The crystal structure of M-CAU-30 was determined by combining electron diffraction tomography for structure solution and powder X-ray diffraction data for the structure refinement. The crystal structure consists of chains of corner sharing MO6 octahedra interconnected by the partly deprotonated linker molecules Ni-H2TPPP6-. Thus 1D channels with pore diameters of 1.3 × 2.0 nm are formed. The redox activity of Zr-CAU-30 was investigated by cyclic voltammetry resulting in a reversible redox process at a half-wave potential of E1/2 = -0.649 V.

SELECTION OF CITATIONS
SEARCH DETAIL
...