Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 12(2): 641-660, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370057

ABSTRACT

Evidence supports the potential application of polyphenols as agents against obesity. Pomegranate is one of the fruits that possess a high content of polyphenols. This systematic review and meta-analysis of randomized controlled trials (RCTs) sought to evaluate the effects of pomegranate consumption on obesity indices, including body mass index (BMI), body weight, waist circumference (WC), fat mass (FM), body fat percentage (BFP), and fat-free mass (FFM) in adults. Relevant RCTs were obtained by searching databases, including PubMed, SCOPUS, and Web of Science, up to May 2023. Heterogeneity tests of the included trials were performed using the I 2 statistic. Random effects models were assessed based on the heterogeneity tests, and pooled data were determined as the weighted mean difference with a 95% confidence interval. Pooled analysis of 28 trials revealed that pomegranate consumption led to a significant reduction in body weight (WMD: -1.97, 95% CI: -2.91, -1.03, p < .05), and a significant decrease in BMI (WMD: -0.48, 95% CI: -0.76, -0.20, p < .05) in comparison with the control group. However, there were no significant effects on WC, FM, FFM, and BFP in comparison with the control group. Pomegranate consumption may yield a beneficial effect on body weight and BMI in adults. However, there were no significant effects on WC, FM, FFM, and BFP, by pomegranate consumption. Also, pomegranate consumption can reduce body weight, BMI, WC, and BFP in obese adults. Long-term trials with different doses of pomegranate are needed.

2.
Complement Ther Med ; 80: 103008, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38040096

ABSTRACT

BACKGROUND: We performed a systematic review and meta-analysis of all published clinical trial studies to provide a more accurate estimation of pomegranate effects on liver enzymes in different clinical conditions. METHODS: A systematic literature search was carried out using electronic databases, including PubMed, Web of Science, and Scopus, up to March 2023 to identify eligible randomized clinical trials (RCTs) evaluating the effect of pomegranate consumption on liver function enzymes. Heterogeneity tests of the selected trials were performed using the I2 statistic. Random effects models were assessed based on the heterogeneity tests, and pooled data were determined as the weighted mean difference with a 95% confidence interval. RESULTS: Out of 3811 records, 9 eligible RCTs were included in the current study. However, there are limitations in the included studies, which can be mentioned in the dose, duration, and type of interventions that are different among the studies, as well as the small number of included studies. All this causes heterogeneity among studies and this heterogeneity limits the consistency of the results. Our meta-analysis showed that pomegranate intake had a significant effect on lowering aspartate aminotransferase (AST) levels in long-term intervention (> 8 weeks), obese (BMI≥30) individuals, or patients with metabolic disorders. Furthermore, results showed a significant decrease in alanine aminotransferase (ALT) levels in the long-term intervention (> 8 weeks) or in patients with metabolic disorders following the pomegranate intake. Combined results from the random-effects model indicated a significant reduction in gamma-glutamyl transferase (GGT) levels (WMD: -5.43 IU/L 95% CI: -7.78 to -3.08; p < 0.001;) following the pomegranate intake. The results of Egger's test mentioned a significant publication bias for the trials examining the effect of pomegranate intake on AST (p = 0.007) and ALT (p = 0.036). CONCLUSION: Our results suggest that long-term pomegranate intake may be effective in ameliorating liver enzymes in adults with obesity and metabolic disorders who are more likely to have elevated baseline liver enzymes due to some degree of liver injury or tissue damage. However, some studies failed to conduct independent biochemical characterization of the product used, including the presence and quantity of polyphenols, antioxidants, and proanthocyanidins.


Subject(s)
Liver Diseases , Metabolic Diseases , Pomegranate , Adult , Humans , Alanine Transaminase , Liver , Liver Diseases/drug therapy , Liver Function Tests
3.
Inflammopharmacology ; 31(5): 2283-2301, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37507609

ABSTRACT

BACKGROUND: Several studies have shown the effects of pomegranate on oxidative stress and inflammation biomarkers, while some studies showed no effects of pomegranate on these biomarkers. Therefore, we aimed to evaluate the effects of pomegranate consumption on C-reactive protein (CRP), interlukin-6 (IL-6), tumor necrosis factor α (TNF-α), total antioxidant capacity (TAC), and malondialdehyde (MDA) in adults. METHODS: A systematic literature search was performed using databases, including PubMed, Web of Science, and Scopus, up to May 2023 to identify eligible randomized controlled trials (RCTs). Heterogeneity tests of the included trials were performed using the I2 statistic. Random effects models were assessed based on the heterogeneity tests, and pooled data were determined as the weighted mean difference with a 95% confidence interval. RESULTS: Of 3811 records, 33 eligible RCTs were included in the current study. Our meta-analysis of the pooled findings showed that pomegranate consumption significantly reduced CRP (WMD: -0.50 mg/l; 95% CI -0.79 to -0.20; p = 0.001), IL-6 (WMD: -1.24 ng/L 95% CI -1.95 to -0.54; p = 0.001), TNF-α (WMD: -1.96 pg/ml 95%CI -2.75 to -1.18; p < 0.001), and MDA (WMD: -0.34 nmol/ml 95%CI -0.42 to -0.25; p < 0.001). Pooled analysis of 13 trials revealed that pomegranate consumption led to a significant increase in TAC (WMD: 0.26 mmol/L 95%CI 0.03 to 0.49; p = 0.025). CONCLUSION: Overall, the results demonstrated that pomegranate consumption has beneficial effects on oxidative stress and inflammatory biomarkers in adults. Therefore, pomegranate can be consumed as an effective dietary approach to attenuate oxidative stress and inflammation in patients with cardiovascular diseases. PROSPERO REGISTRATION CODE: CRD42023406684.


Subject(s)
Pomegranate , Adult , Humans , Pomegranate/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Biomarkers/metabolism , C-Reactive Protein/metabolism , Inflammation/drug therapy , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Dietary Supplements
4.
Curr Pharm Des ; 29(21): 1671-1700, 2023.
Article in English | MEDLINE | ID: mdl-37496241

ABSTRACT

BACKGROUND: In recent times, modifying dietary habits to control cardiovascular risk factors has gained significant attention. However, previous studies have yielded inconsistent results regarding the effects of lycopene and tomato consumption on cardiovascular risk factors. OBJECTIVE: The objective of this study was to assess the impact of consuming lycopene and tomatoes on various cardiovascular risks factors such as lipid profile, glycemic control markers, blood pressure, inflammation, oxidative stress, and body weight. METHODS: A systematic literature search was carried out using electronic databases, including PubMed, Web of Science, and Scopus, up to November 2022 to identify eligible Randomized Control Trials (RCTs) evaluating the effect of lycopene and tomato consumption on cardiovascular risk factors. Heterogeneity tests of the selected trials were performed using the I2 statistic. Random effects models were assessed based on the heterogeneity tests, and pooled data were determined as the weighted mean difference (WMD) with a 95% confidence interval (CI). RESULTS: Out of 27,438 records initially identified, a total of 34 studies met the eligibility criteria and were included in this meta-analysis. The results showed that lycopene consumption was associated with a significant reduction in malondialdehyde (MDA) levels, indicating a potential benefit in reducing oxidative stress. However, lycopene and tomato consumption did not have significant effects on other cardiovascular risk factors such as triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), fasting blood glucose (FBG), systolic blood pressure (SBP), diastolic blood pressure (DBP), Intercellular Adhesion Molecule 1 (ICAM-1), c-reactive protein (CRP), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), body weight, and body mass index (BMI). CONCLUSION: Overall, the findings showed that lycopene and tomato consumption did not affect cardiovascular risk factors. However, lycopene supplementation may result in a significant improvement in MDA levels. With the view to confirming these results, further studies with long-term duration and different doses are needed.


Subject(s)
Solanum lycopersicum , Adult , Humans , Lycopene , GRADE Approach , Cholesterol, LDL , Heart Disease Risk Factors , Body Weight , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...