Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Ecol Lett ; 27(1): e14335, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972585

ABSTRACT

Foraging decisions shape the structure of food webs. Therefore, a behavioural shift in a single species can potentially modify resource-flow dynamics of entire ecosystems. To examine this, we conducted a field experiment to assess foraging niche dynamics of semi-arboreal brown anole lizards in the presence/absence of predatory ground-dwelling curly-tailed lizards in a replicated set of island ecosystems. One year after experimental translocation, brown anoles exposed to these predators had drastically increased perch height and reduced consumption of marine-derived food resources. This foraging niche shift altered marine-to-terrestrial resource-flow dynamics and persisted in the diets of the first-generation offspring. Furthermore, female lizards that displayed more risk-taking behaviours consumed more marine prey on islands with predators present. Our results show how predator-driven rapid behavioural shifts can alter food-web connectivity between oceanic and terrestrial ecosystems and underscore the importance of studying behaviour-mediated niche shifts to understand ecosystem functioning in rapidly changing environments.


Subject(s)
Ecosystem , Lizards , Animals , Female , Food Chain , Predatory Behavior
2.
Mol Ecol ; 32(20): 5558-5574, 2023 10.
Article in English | MEDLINE | ID: mdl-37698063

ABSTRACT

Introductions of invasive species to new environments often result in rapid rates of trait evolution. While in some cases these evolutionary transitions are adaptive and driven by natural selection, they can also result from patterns of genetic and phenotypic variation associated with the invasion history. Here, we examined the brown anole (Anolis sagrei), a widespread invasive lizard for which genetic data have helped trace the sources of non-native populations. We focused on the dewlap, a complex signalling trait known to be subject to multiple selective pressures. We measured dewlap reflectance, pattern and size in 30 non-native populations across the southeastern United States. As well, we quantified environmental variables known to influence dewlap signal effectiveness, such as canopy openness. Further, we used genome-wide data to estimate genetic ancestry, perform association mapping and test for signatures of selection. We found that among-population variation in dewlap characteristics was best explained by genetic ancestry. This result was supported by genome-wide association mapping, which identified several ancestry-specific loci associated with dewlap traits. Despite the strong imprint of this aspect of the invasion history on dewlap variation, we also detected significant relationships between dewlap traits and local environmental conditions. However, we found limited evidence that dewlap-associated genetic variants have been subject to selection. Our study emphasizes the importance of genetic ancestry and admixture in shaping phenotypes during biological invasion, while leaving the role of selection unresolved, likely due to the polygenic genetic architecture of dewlaps and selection acting on many genes of small effect.


Subject(s)
Genome-Wide Association Study , Lizards , Animals , Selection, Genetic , Phenotype , Multifactorial Inheritance , Southeastern United States , Lizards/genetics , Biological Evolution
3.
Mol Ecol ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37489260

ABSTRACT

Research conducted during the past two decades has demonstrated that biological invasions are excellent models of rapid evolution. Even so, characteristics of invasive populations such as a short time for recombination to assemble optimal combinations of alleles may occasionally limit adaptation to new environments. Here, we investigated such genetic constraints to adaptation in the invasive brown anole (Anolis sagrei)-a tropical ectotherm that was introduced to the southeastern United States, a region with a much colder climate than in its native Caribbean range. We examined thermal physiology for 30 invasive populations and tested for a climatic cline in cold tolerance. Also, we used genomics to identify mechanisms that may limit adaptation. We found no support for a climatic cline, indicating that thermal tolerance did not shift adaptively. Concomitantly, population genomic results were consistent with the occurrence of recombination cold spots that comprise more than half of the genome and maintain long-range associations among alleles in invasive populations. These genomic regions overlap with both candidate thermal tolerance loci that we identified using a standard genome-wide association test. Moreover, we found that recombination cold spots do not have a large contribution to population differentiation in the invasive range, contrary to observations in the native range. We suggest that limited recombination is constraining the contribution of large swaths of the genome to adaptation in invasive brown anoles. Our study provides an example of evolutionary stasis during invasion and highlights the possibility that reduced recombination occasionally slows down adaptation in invasive populations.

4.
Proc Natl Acad Sci U S A ; 120(24): e2221691120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37276393

ABSTRACT

The idea that changing environmental conditions drive adaptive evolution is a pillar of evolutionary ecology. But, the opposite-that adaptive evolution alters ecological processes-has received far less attention yet is critical for eco-evolutionary dynamics. We assessed the ecological impact of divergent values in a key adaptive trait using 16 populations of the brown anole lizard (Anolis sagrei). Mirroring natural variation, we established islands with short- or long-limbed lizards at both low and high densities. We then monitored changes in lower trophic levels, finding that on islands with a high density of short-limbed lizards, web-spider densities decreased and plants grew more via an indirect positive effect, likely through an herbivore-mediated trophic cascade. Our experiment provides strong support for evolution-to-ecology connections in nature, likely closing an otherwise well-characterized eco-evolutionary feedback loop.


Subject(s)
Food Chain , Lizards , Animals , Herbivory , Phenotype , Nutritional Status , Biological Evolution
5.
Am Nat ; 201(4): 537-556, 2023 04.
Article in English | MEDLINE | ID: mdl-36958004

ABSTRACT

AbstractDetermining whether and how evolution is predictable is an important goal, particularly as anthropogenic disturbances lead to novel species interactions that could modify selective pressures. Here, we use a multigeneration field experiment with brown anole lizards (Anolis sagrei) to test hypotheses about the predictability of evolution. We manipulated the presence/absence of predators and competitors of A. sagrei across 16 islands in the Bahamas that had preexisting brown anole populations. Before the experiment and again after roughly five generations, we measured traits related to locomotor performance and habitat use by brown anoles and used double-digest restriction enzyme-associated DNA sequencing to estimate genome-wide changes in allele frequencies. Although previous work showed that predators and competitors had characteristic effects on brown anole behavior, diet, and population sizes, we found that evolutionary change at both phenotypic and genomic levels was difficult to forecast. Phenotypic changes were contingent on sex and habitat use, whereas genetic change was unpredictable and not measurably correlated with phenotypic changes, experimental treatments, or other environmental factors. Our work shows how differences in ecological context can alter evolutionary outcomes over short timescales and underscores the difficulty of forecasting evolutionary responses to multispecies interactions in natural conditions, even in a well-studied system with ample supporting ecological information.


Subject(s)
Lizards , Animals , Lizards/genetics , Ecosystem , Bahamas , Phenotype , Diet
6.
Mol Ecol ; 32(11): 2930-2944, 2023 06.
Article in English | MEDLINE | ID: mdl-36811388

ABSTRACT

Invasive species can impact native populations through competition, predation, habitat alteration, and disease transmission, but also genetically through hybridization. Potential outcomes of hybridization span the continuum from extinction to hybrid speciation and can be further complicated by anthropogenic habitat disturbance. Hybridization between the native green anole lizard (Anolis carolinensis) and a morphologically similar invader (A. porcatus) in south Florida provides an ideal opportunity to study interspecific admixture across a heterogeneous landscape. We used reduced-representation sequencing to describe introgression in this hybrid system and to test for a relationship between urbanization and non-native ancestry. Our findings indicate that hybridization between green anole lineages was probably a limited, historic event, producing a hybrid population characterized by a diverse continuum of ancestry proportions. Genomic cline analyses revealed rapid introgression and disproportionate representation of non-native alleles at many loci and no evidence for reproductive isolation between parental species. Three loci were associated with urban habitat characteristics; urbanization and non-native ancestry were positively correlated, although this relationship did not remain significant when accounting for spatial nonindependence. Ultimately, our study demonstrates the persistence of non-native genetic material even in the absence of ongoing immigration, indicating that selection favouring non-native alleles can override the demographic limitation of low propagule pressure. We also note that not all outcomes of admixture between native and non-native species should be considered intrinsically negative. Hybridization with ecologically robust invaders can lead to adaptive introgression, which may facilitate the long-term survival of native populations otherwise unable to adapt to anthropogenically mediated global change.


Subject(s)
Lizards , Animals , Alleles , Lizards/genetics , Hybridization, Genetic , Genomics , Introduced Species
7.
Evolution ; 77(1): 123-137, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36625679

ABSTRACT

As anthropogenic activities are increasing the frequency and severity of droughts, understanding whether and how fast populations can adapt to sudden changes in their hydric environment is critically important. Here, we capitalize on the introduction of the Cuban brown anole lizard (Anolis sagrei) in North America to assess the contemporary evolution of a widespread terrestrial vertebrate to an abrupt climatic niche shift. We characterized hydric balance in 30 populations along a large climatic gradient. We found that while evaporative and cutaneous water loss varied widely, there was no climatic cline, as would be expected under adaptation. Furthermore, the skin of lizards from more arid environments was covered with smaller scales, a condition thought to limit water conservation and thus be maladaptive. In contrast to environmental conditions, genome-averaged ancestry was a significant predictor of water loss. This was reinforced by our genome-wide association analyses, which indicated a significant ancestry-specific effect for water loss at one locus. Thus, our study indicates that the water balance of invasive brown anoles is dictated by an environment-independent introduction and hybridization history and highlights genetic interactions or genetic correlations as factors that might forestall adaptation. Alternative water conservation strategies, including behavioral mitigation, may influence the brown anole invasion success and require future examination.


Subject(s)
Lizards , Animals , Lizards/genetics , Genome-Wide Association Study , Acclimatization , Adaptation, Physiological , Water
8.
J Evol Biol ; 36(1): 195-208, 2023 01.
Article in English | MEDLINE | ID: mdl-36357963

ABSTRACT

Multivariate adaptation to climatic shifts may be limited by trait integration that causes genetic variation to be low in the direction of selection. However, strong episodes of selection induced by extreme climatic pressures may facilitate future population-wide responses if selection reduces trait integration and increases adaptive potential (i.e., evolvability). We explain this counter-intuitive framework for extreme climatic events in which directional selection leads to increased evolvability and exemplify its use in a case study. We tested this hypothesis in two populations of the lizard Anolis scriptus that experienced hurricane-induced selection on limb traits. We surveyed populations immediately before and after the hurricane as well as the offspring of post-hurricane survivors, allowing us to estimate both selection and response to selection on key functional traits: forelimb length, hindlimb length, and toepad area. The direct selection was parallel in both islands and strong in several limb traits. Even though overall limb integration did not change after the hurricane, both populations showed a non-significant tendency toward increased evolvability after the hurricane despite the direction of selection not being aligned with the axis of most variance (i.e., body size). The population with comparably lower between-limb integration showed a less constrained response to selection. Hurricane-induced selection, not aligned with the pattern of high trait correlations, likely conflicts with selection occurring during normal ecological conditions that favours functional coordination between limb traits, and would likely need to be very strong and more persistent to elicit a greater change in trait integration and evolvability. Future tests of this hypothesis should use G-matrices in a variety of wild organisms experiencing selection due to extreme climatic events.


Subject(s)
Lizards , Animals , Lizards/physiology , Acclimatization , Adaptation, Physiological/genetics , Extremities , Selection, Genetic
9.
Am Nat ; 200(5): E207-E220, 2022 11.
Article in English | MEDLINE | ID: mdl-36260855

ABSTRACT

AbstractThe G matrix, which quantifies the genetic architecture of traits, is often viewed as an evolutionary constraint. However, G can evolve in response to selection and may also be viewed as a product of adaptive evolution. Convergent evolution of G in similar environments would suggest that G evolves adaptively, but it is difficult to disentangle such effects from phylogeny. Here, we use the adaptive radiation of Anolis lizards to ask whether convergence of G accompanies the repeated evolution of habitat specialists, or ecomorphs, across the Greater Antilles. We measured G in seven species representing three ecomorphs (trunk-crown, trunk-ground, and grass-bush). We found that the overall structure of G does not converge. Instead, the structure of G is well conserved and displays a phylogenetic signal consistent with Brownian motion. However, several elements of G showed signatures of convergence, indicating that some aspects of genetic architecture have been shaped by selection. Most notably, genetic correlations between limb traits and body traits were weaker in long-legged trunk-ground species, suggesting effects of recurrent selection on limb length. Our results demonstrate that common selection pressures may have subtle but consistent effects on the evolution of G, even as its overall structure remains conserved.


Subject(s)
Lizards , Animals , Phylogeny , Ecosystem , Phenotype , Extremities
10.
Commun Biol ; 5(1): 1126, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36284162

ABSTRACT

Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole, Anolis sagrei - a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes of A. sagrei.


Subject(s)
Lizards , Animals , Lizards/genetics , Genome , Sex Chromosomes , Genomics , X Chromosome
11.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Article in English | MEDLINE | ID: mdl-34654747

ABSTRACT

Hybridization is among the evolutionary mechanisms most frequently hypothesized to drive the success of invasive species, in part because hybrids are common in invasive populations. One explanation for this pattern is that biological invasions coincide with a change in selection pressures that limit hybridization in the native range. To investigate this possibility, we studied the introduction of the brown anole (Anolis sagrei) in the southeastern United States. We find that native populations are highly genetically structured. In contrast, all invasive populations show evidence of hybridization among native-range lineages. Temporal sampling in the invasive range spanning 15 y showed that invasive genetic structure has stabilized, indicating that large-scale contemporary gene flow is limited among invasive populations and that hybrid ancestry is maintained. Additionally, our results are consistent with hybrid persistence in invasive populations resulting from changes in natural selection that occurred during invasion. Specifically, we identify a large-effect X chromosome locus associated with variation in limb length, a well-known adaptive trait in anoles, and show that this locus is often under selection in the native range, but rarely so in the invasive range. Moreover, we find that the effect size of alleles at this locus on limb length is much reduced in hybrids among divergent lineages, consistent with epistatic interactions. Thus, in the native range, epistasis manifested in hybrids can strengthen extrinsic postmating isolation. Together, our findings show how a change in natural selection can contribute to an increase in hybridization in invasive populations.


Subject(s)
Lizards/genetics , Selection, Genetic , Animals , Genetic Variation , Introduced Species , Nucleic Acid Hybridization
12.
Proc Natl Acad Sci U S A ; 117(19): 10429-10434, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32341144

ABSTRACT

Extreme climate events such as droughts, cold snaps, and hurricanes can be powerful agents of natural selection, producing acute selective pressures very different from the everyday pressures acting on organisms. However, it remains unknown whether these infrequent but severe disruptions are quickly erased by quotidian selective forces, or whether they have the potential to durably shape biodiversity patterns across regions and clades. Here, we show that hurricanes have enduring evolutionary impacts on the morphology of anoles, a diverse Neotropical lizard clade. We first demonstrate a transgenerational effect of extreme selection on toepad area for two populations struck by hurricanes in 2017. Given this short-term effect of hurricanes, we then asked whether populations and species that more frequently experienced hurricanes have larger toepads. Using 70 y of historical hurricane data, we demonstrate that, indeed, toepad area positively correlates with hurricane activity for both 12 island populations of Anolis sagrei and 188 Anolis species throughout the Neotropics. Extreme climate events are intensifying due to climate change and may represent overlooked drivers of biogeographic and large-scale biodiversity patterns.


Subject(s)
Lizards/anatomy & histology , Selection, Genetic/physiology , Animals , Biodiversity , Biological Evolution , Climate , Climate Change/statistics & numerical data , Cyclonic Storms/statistics & numerical data , Disasters/statistics & numerical data , Ecosystem , Islands , Phylogeny , Phylogeography , Population Dynamics/statistics & numerical data , Toes/anatomy & histology
13.
Proc Biol Sci ; 287(1919): 20191682, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31964308

ABSTRACT

Since the invention of electric lighting, artificial light at night (ALAN) has become a defining, and evolutionary novel, feature of human-altered environments especially in cities. ALAN imposes negative impacts on many organisms, including disrupting endocrine function, metabolism, and reproduction. However, we do not know how generalized these impacts are across taxa that exploit urban environments. We exposed brown anole lizards, an abundant and invasive urban exploiter, to relevant levels of ALAN in the laboratory and assessed effects on growth and reproduction at the start of the breeding season. Male and female anoles exposed to ALAN increased growth and did not suffer increased levels of corticosterone. ALAN exposure induced earlier egg-laying, likely by mimicking a longer photoperiod, and increased reproductive output without reducing offspring quality. These increases in growth and reproduction should increase fitness. Anoles, and potentially other taxa, may be resistant to some negative effects of ALAN and able to take advantage of the novel niche space ALAN creates. ALAN and both its negative and positive impacts may play a crucial role in determining which species invade and exploit urban environments.


Subject(s)
Lighting , Lizards/physiology , Reproduction , Animals , Female , Male
14.
J Evol Biol ; 33(4): 468-494, 2020 04.
Article in English | MEDLINE | ID: mdl-31872929

ABSTRACT

Some of the most important insights into the ecological and evolutionary processes of diversification and speciation have come from studies of island adaptive radiations, yet relatively little research has examined how these radiations initiate. We suggest that Anolis sagrei is a candidate for understanding the origins of the Caribbean Anolis adaptive radiation and how a colonizing anole species begins to undergo allopatric diversification, phenotypic divergence and, potentially, speciation. We undertook a genomic and morphological analysis of representative populations across the entire native range of A. sagrei, finding that the species originated in the early Pliocene, with the deepest divergence occurring between western and eastern Cuba. Lineages from these two regions subsequently colonized the northern Caribbean. We find that at the broadest scale, populations colonizing areas with fewer closely related competitors tend to evolve larger body size and more lamellae on their toepads. This trend follows expectations for post-colonization divergence from progenitors and convergence in allopatry, whereby populations freed from competition with close relatives evolve towards common morphological and ecological optima. Taken together, our results show a complex history of ancient and recent Cuban diaspora with populations on competitor-poor islands evolving away from their ancestral Cuban populations regardless of their phylogenetic relationships, thus providing insight into the original diversification of colonist anoles at the beginning of the radiation. Our research also supplies an evolutionary framework for the many studies of this increasingly important species in ecological and evolutionary research.


Subject(s)
Animal Distribution , Genetic Speciation , Lizards/genetics , Animals , Caribbean Region , Male , Phenotype , Phylogeography , Quantitative Trait, Heritable
15.
Nature ; 570(7759): 58-64, 2019 06.
Article in English | MEDLINE | ID: mdl-31168105

ABSTRACT

Biological invasions are both a pressing environmental challenge and an opportunity to investigate fundamental ecological processes, such as the role of top predators in regulating biodiversity and food-web structure. In whole-ecosystem manipulations of small Caribbean islands on which brown anole lizards (Anolis sagrei) were the native top predator, we experimentally staged invasions by competitors (green anoles, Anolis smaragdinus) and/or new top predators (curly-tailed lizards, Leiocephalus carinatus). We show that curly-tailed lizards destabilized the coexistence of competing prey species, contrary to the classic idea of keystone predation. Fear-driven avoidance of predators collapsed the spatial and dietary niche structure that otherwise stabilized coexistence, which intensified interspecific competition within predator-free refuges and contributed to the extinction of green-anole populations on two islands. Moreover, whereas adding either green anoles or curly-tailed lizards lengthened food chains on the islands, adding both species reversed this effect-in part because the apex predators were trophic omnivores. Our results underscore the importance of top-down control in ecological communities, but show that its outcomes depend on prey behaviour, spatial structure, and omnivory. Diversity-enhancing effects of top predators cannot be assumed, and non-consumptive effects of predation risk may be a widespread constraint on species coexistence.


Subject(s)
Biodiversity , Food Chain , Lizards/physiology , Predatory Behavior , Animals , Biological Evolution , Biota , Competitive Behavior , Feeding Behavior , Female , Lizards/classification , Male , Species Specificity , West Indies
16.
Ecol Evol ; 9(7): 4138-4148, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31015994

ABSTRACT

In allopatric species, reproductive isolation evolves through the accumulation of genetic incompatibilities. The degree of divergence required for complete reproductive isolation is highly variable across taxa, which makes the outcome of secondary contact between allopatric species unpredictable. Since before the Pliocene, two species of Anolis lizards, Anolis carolinensis and Anolis porcatus, have been allopatric, yet this period of independent evolution has not led to substantial species-specific morphological differentiation, and therefore, they might not be reproductively isolated. In this study, we determined the genetic consequences of localized, secondary contact between the native green anole, A. carolinensis, and the introduced Cuban green anole, A. porcatus, in South Miami. Using 18 microsatellite markers, we found that the South Miami population formed a genetic cluster distinct from both parental species. Mitochondrial DNA revealed maternal A. porcatus ancestry for 35% of the individuals sampled from this population, indicating a high degree of cytonuclear discordance. Thus, hybridization with A. porcatus, not just population structure within A. carolinensis, may be responsible for the genetic distinctiveness of this population. Using tree-based maximum-likelihood analysis, we found support for a more recent, secondary introduction of A. porcatus to Florida. Evidence that ~33% of the nuclear DNA resulted from a secondary introduction supports the hybrid origin of the green anole population in South Miami. We used multiple lines of evidence and multiple genetic markers to reconstruct otherwise cryptic patterns of species introduction and hybridization. Genetic evidence for a lack of reproductive isolation, as well as morphological similarities between the two species, supports revising the taxonomy of A. carolinensis to include A. porcatus from western Cuba. Future studies should target the current geographic extent of introgression originating from the past injection of genetic material from Cuban green anoles and determine the consequences for the evolutionary trajectory of green anole populations in southern Florida.

17.
Glob Chang Biol ; 25(2): 562-576, 2019 02.
Article in English | MEDLINE | ID: mdl-30388300

ABSTRACT

The urban heat island effect, where urban areas exhibit higher temperatures than less-developed suburban and natural habitats, occurs in cities across the globe and is well understood from a physical perspective and at broad spatial scales. However, very little is known about how thermal variation caused by urbanization influences the ability of organisms to live in cities. Ectotherms are sensitive to environmental changes that affect thermal conditions, and therefore, increased urban temperatures may pose significant challenges to thermoregulation and alter temperature-dependent activity. To evaluate whether these changes to the thermal environment affect the persistence and dispersal of ectothermic species in urban areas, we studied two species of Anolis lizards (Anolis cristatellus and Anolis sagrei) introduced to Miami-Dade County, FL, USA, where they occur in both urban and natural habitats. We calculated canopy openness and measured operative temperature (Te ), which estimates the distribution of body temperatures in a non-thermoregulating population, in four urban and four natural sites. We also captured lizards throughout the day and recorded their internal body temperature (Tb ). We found that urban areas had more open canopies and higher Te compared to natural habitats. Laboratory trials showed that A. cristatellus preferred lower temperatures than A. sagrei. Urban sites currently occupied by each species appear to lower thermoregulatory costs for both species, but only A. sagreihad field Tb that were more often within their preferred temperature range in urban habitats compared to natural areas. Furthermore, based on available Te within each species' preferred temperature range, urban sites with only A. sagrei appear less suitable for A. cristatellus, whereas natural sites with only A. cristatellus are less suitable for A. sagrei. These results highlight how the thermal properties of urban areas contribute to patterns of persistence and dispersal, particularly relevant for studying species invasions worldwide.


Subject(s)
Body Temperature Regulation , Ecosystem , Hot Temperature , Lizards/physiology , Animals , Cities , Florida , Introduced Species , Species Specificity , Urbanization
18.
Evol Lett ; 2(4): 310-322, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30283684

ABSTRACT

On microevolutionary timescales, adaptive evolution depends upon both natural selection and the underlying genetic architecture of traits under selection, which may constrain evolutionary outcomes. Whether such genetic constraints shape phenotypic diversity over macroevolutionary timescales is more controversial, however. One key prediction is that genetic constraints should bias the early stages of species divergence along "genetic lines of least resistance" defined by the genetic (co)variance matrix, G. This bias is expected to erode over time as species means and G matrices diverge, allowing phenotypes to evolve away from the major axis of variation. We tested for evidence of this signal in West Indian Anolis lizards, an iconic example of adaptive radiation. We found that the major axis of morphological evolution was well aligned with a major axis of genetic variance shared by all species despite separation times of 20-40 million years, suggesting that divergence occurred along a conserved genetic line of least resistance. Further, this signal persisted even as G itself evolved, apparently because the largest evolutionary changes in G were themselves aligned with the line of genetic least resistance. Our results demonstrate that the signature of genetic constraint may persist over much longer timescales than previously appreciated, even in the presence of evolving genetic architecture. This pattern may have arisen either because pervasive constraints have biased the course of adaptive evolution or because the G matrix itself has been shaped by selection to conform to the adaptive landscape.

19.
Nature ; 560(7716): 88-91, 2018 08.
Article in English | MEDLINE | ID: mdl-30046104

ABSTRACT

Hurricanes are catastrophically destructive. Beyond their toll on human life and livelihoods, hurricanes have tremendous and often long-lasting effects on ecological systems1,2. Despite many examples of mass mortality events following hurricanes3-5, hurricane-induced natural selection has not previously been demonstrated. Immediately after we finished a survey of Anolis scriptus-a common, small-bodied lizard found throughout the Turks and Caicos archipelago-our study populations were battered by Hurricanes Irma and Maria. Shortly thereafter, we revisited the populations to determine whether morphological traits related to clinging capacity had shifted in the intervening six weeks and found that populations of surviving lizards differed in body size, relative limb length and toepad size from those present before the storm. Our serendipitous study, which to our knowledge is the first to use an immediately before and after comparison6 to investigate selection caused by hurricanes, demonstrates that hurricanes can induce phenotypic change in a population and strongly implicates natural selection as the cause. In the decades ahead, as extreme climate events are predicted to become more intense and prevalent7,8, our understanding of evolutionary dynamics needs to incorporate the effects of these potentially severe selective episodes9-11.


Subject(s)
Cyclonic Storms , Disasters , Lizards/anatomy & histology , Selection, Genetic , Animals , Body Size , Extremities/anatomy & histology , Female , Femur/anatomy & histology , Humerus/anatomy & histology , Islands , Male , West Indies
20.
Science ; 360(6392): 1017-1020, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29853685

ABSTRACT

Biologists have long debated the role of behavior in evolution, yet understanding of its role as a driver of adaptation is hampered by the scarcity of experimental studies of natural selection on behavior in nature. After showing that individual Anolis sagrei lizards vary consistently in risk-taking behaviors, we experimentally established populations on eight small islands either with or without Leiocephalus carinatus, a major ground predator. We found that selection predictably favors different risk-taking behaviors under different treatments: Exploratory behavior is favored in the absence of predators, whereas avoidance of the ground is favored in their presence. On predator islands, selection on behavior is stronger than selection on morphology, whereas the opposite holds on islands without predators. Our field experiment demonstrates that selection can shape behavioral traits, paving the way toward adaptation to varying environmental contexts.


Subject(s)
Lizards/genetics , Lizards/physiology , Predatory Behavior , Risk-Taking , Selection, Genetic , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...