Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Fish Biol ; 104(5): 1548-1565, 2024 May.
Article in English | MEDLINE | ID: mdl-38408838

ABSTRACT

Marine community science presents an important route to gather valuable scientific information while also influencing local management and policy, thus contributing to marine conservation efforts. Because seahorses are cryptic but charismatic species, they are good candidates for engaging diverse people to help overcome the many gaps in biological knowledge. We have synthesized information contributed to the community science project iSeahorse from October 2013 to April 2022 for 35 of 46 known seahorse species. We then compared the obtained results with information in existing IUCN Red List assessments, executed from 2014 to 2017, to explore the potential of iSeahorse in expanding seahorse knowledge. Our results show updated geographic ranges for 7 seahorse species, new habitats described for 24 species, observations outside the previously recorded depth range for 14 species, and new information on sex ratio for 15 species and on pregnancy seasonality for 11 species. As one example of the power of iSeahorse, contributed observations on Coleman's pygmy seahorse (Hippocampus colemani) indicated that its geographic range is thousands of square kilometers larger, its habitat more diverse, and its depth range shallower than previously known. It is clear that iSeahorse is expanding knowledge on seahorses to a level that will help improve IUCN Red List assessments. The power of community science for marine conservation in general needs to be fully explored.


Subject(s)
Conservation of Natural Resources , Ecosystem , Smegmamorpha , Animals , Female , Male , Sex Ratio , Endangered Species
3.
Emerg Top Life Sci ; 6(4): 389-402, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36398707

ABSTRACT

Assessing three interlinked issues, plastic pollution, climate change and biodiversity loss separately can overlook potential interactions that may lead to positive or negative impacts on global ecosystem processes. Recent studies suggest that threatened species and ecosystems are vulnerable to both plastic pollution and climate change stressors. Here we consider the connectivity and state of knowledge between these three environmental issues with a focus on the Global South. Nine out of top ten Long-Term Climate Risk Index (CRI) (2000-2019) ranked countries are located within the Global South, yet research is focused in the Global North. A literature search for the top ten Long-Term Climate Risk Index (CRI) (2000-2019) ranked countries matched a total of 2416 (3.3% of global publications) search results on climate change, with 56 (4% of the global publications) on plastic pollution, and seven (7.7% of the global publications) on both climate change and plastic pollution. There is a strong correlation between the Global South and high biodiversity hotspots, high food insecurity and low environmental performance. Using Bangladesh as a case study, we show the erosion rates and sea level rise scenarios that will increase ocean-bound plastic pollution and impact high biodiversity areas. Poverty alleviation and promoting renewable energy and green practices can significantly reduce the stress on the environment. We recommend that these connected planetary threats can be best addressed through a holistic and collaborative approach to research, a focus on the Global South, and an ambitious policy agenda.


Subject(s)
Ecosystem , Plastics , Environmental Pollution , Climate Change , Biodiversity
4.
Sci Total Environ ; 806(Pt 1): 150392, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34583073

ABSTRACT

Plastic pollution and climate change have commonly been treated as two separate issues and sometimes are even seen as competing. Here we present an alternative view that these two issues are fundamentally linked. Primarily, we explore how plastic contributes to greenhouse gas (GHG) emissions from the beginning to the end of its life cycle. Secondly, we show that more extreme weather and floods associated with climate change, will exacerbate the spread of plastic in the natural environment. Finally, both issues occur throughout the marine environment, and we show that ecosystems and species can be particularly vulnerable to both, such as coral reefs that face disease spread through plastic pollution and climate-driven increased global bleaching events. A Web of Science search showed climate change and plastic pollution studies in the ocean are often siloed, with only 0.4% of the articles examining both stressors simultaneously. We also identified a lack of regional and industry-specific life cycle analysis data for comparisons in relative GHG contributions by materials and products. Overall, we suggest that rather than debate over the relative importance of climate change or marine plastic pollution, a more productive course would be to determine the linking factors between the two and identify solutions to combat both crises.


Subject(s)
Climate Change , Greenhouse Gases , Coral Reefs , Ecosystem , Plastics
5.
Sci Total Environ ; 761: 143285, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33172641

ABSTRACT

Rivers play a crucial role in transporting land-based plastic waste to the ocean, with the Ganges reported as the second largest contributing river of plastic pollution globally. To better quantify global plastic pollution transport and effectively reduce the sources and risks imposed, a clear understanding of the origin, transport, fate, and effects of riverine plastic debris is important. In this review paper, we discuss the current state of knowledge of plastic pollution in aquatic systems in Bangladesh and evaluate existing research gaps. Bangladesh has been recognized as an internationally significant nation in the plastic pollution crisis, but this paper identifies a major disconnect in knowledge, understanding and capacity to understand and address this critical environmental and public health issue. Here, we review all available scientific publications on plastic pollution in the freshwater and marine environment in Bangladesh and identify key research themes. A total of 24 studies relevant to plastic pollution were published from 2006 to 2019, of which 18 were selected for this study under the authors' criteria. Nine focused on plastic pollution in the marine environment, eight focused on plastic waste generation and management and only one focused on the freshwater environment. We compared our findings with three other countries in the Global South with comparable per capita gross domestic product (GDP) and mismanaged waste, namely Cambodia, Kenya, and Tanzania, revealing similar knowledge gaps. This lack of research demonstrates a need for further work to monitor and model riverine plastic transport and examine the implications for aquatic organisms. This will facilitate the formulation of national management strategies aimed at addressing plastic pollution.

6.
Ecol Evol ; 10(17): 9339-9357, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32953065

ABSTRACT

Spatial and temporal distribution of seabird transiting and foraging at sea is an important consideration for marine conservation planning. Using at-sea observations of seabirds (n = 317), collected during the breeding season from 2012 to 2016, we built boosted regression tree (BRT) models to identify relationships between numerically dominant seabird species (red-footed booby, brown noddy, white tern, and wedge-tailed shearwater), geomorphology, oceanographic variability, and climate oscillation in the Chagos Archipelago. We documented positive relationships between red-footed booby and wedge-tailed shearwater abundance with the strength in the Indian Ocean Dipole, as represented by the Dipole Mode Index (6.7% and 23.7% contribution, respectively). The abundance of red-footed boobies, brown noddies, and white terns declined abruptly with greater distance to island (17.6%, 34.1%, and 41.1% contribution, respectively). We further quantified the effects of proximity to rat-free and rat-invaded islands on seabird distribution at sea and identified breaking point distribution thresholds. We detected areas of increased abundance at sea and habitat use-age under a scenario where rats are eradicated from invaded nearby islands and recolonized by seabirds. Following rat eradication, abundance at sea of red-footed booby, brown noddy, and white terns increased by 14%, 17%, and 3%, respectively, with no important increase detected for shearwaters. Our results have implication for seabird conservation and island restoration. Climate oscillations may cause shifts in seabird distribution, possibly through changes in regional productivity and prey distribution. Invasive species eradications and subsequent island recolonization can lead to greater access for seabirds to areas at sea, due to increased foraging or transiting through, potentially leading to distribution gains and increased competition. Our approach predicting distribution after successful eradications enables anticipatory threat mitigation in these areas, minimizing competition between colonies and thereby maximizing the risk of success and the conservation impact of eradication programs.

8.
PLoS Biol ; 17(8): e3000366, 2019 08.
Article in English | MEDLINE | ID: mdl-31386657

ABSTRACT

Since the 1950s, industrial fisheries have expanded globally, as fishing vessels are required to travel further afield for fishing opportunities. Technological advancements and fishery subsidies have granted ever-increasing access to populations of sharks, tunas, billfishes, and other predators. Wilderness refuges, defined here as areas beyond the detectable range of human influence, are therefore increasingly rare. In order to achieve marine resources sustainability, large no-take marine protected areas (MPAs) with pelagic components are being implemented. However, such conservation efforts require knowledge of the critical habitats for predators, both across shallow reefs and the deeper ocean. Here, we fill this gap in knowledge across the Indo-Pacific by using 1,041 midwater baited videos to survey sharks and other pelagic predators such as rainbow runner (Elagatis bipinnulata), mahi-mahi (Coryphaena hippurus), and black marlin (Istiompax indica). We modeled three key predator community attributes: vertebrate species richness, mean maximum body size, and shark abundance as a function of geomorphology, environmental conditions, and human pressures. All attributes were primarily driven by geomorphology (35%-62% variance explained) and environmental conditions (14%-49%). While human pressures had no influence on species richness, both body size and shark abundance responded strongly to distance to human markets (12%-20%). Refuges were identified at more than 1,250 km from human markets for body size and for shark abundance. These refuges were identified as remote and shallow seabed features, such as seamounts, submerged banks, and reefs. Worryingly, hotpots of large individuals and of shark abundance are presently under-represented within no-take MPAs that aim to effectively protect marine predators, such as the British Indian Ocean Territory. Population recovery of predators is unlikely to occur without strategic placement and effective enforcement of large no-take MPAs in both coastal and remote locations.


Subject(s)
Aquatic Organisms/growth & development , Conservation of Natural Resources/methods , Predatory Behavior/physiology , Animals , Body Size , Coral Reefs , Ecosystem , Food Supply/methods , Pacific Ocean , Seafood , Wilderness
9.
Mar Biol ; 165(1): 19, 2018.
Article in English | MEDLINE | ID: mdl-29238097

ABSTRACT

Accurate taxonomy, population demography, and habitat descriptors inform species threat assessments and the design of effective conservation measures. Here we combine published studies with new genetic, morphological and habitat data that were collected from seahorse populations located along the European and North African coastlines to help inform management decisions for European seahorses. This study confirms the presence of only two native seahorse species (Hippocampus guttulatus and H. hippocampus) across Europe, with sporadic occurrence of non-native seahorse species in European waters. For the two native species, our findings demonstrate that highly variable morphological characteristics, such as size and presence or number of cirri, are unreliable for distinguishing species. Both species exhibit sex dimorphism with females being significantly larger. Across its range, H. guttulatus were larger and found at higher densities in cooler waters, and individuals in the Black Sea were significantly smaller than in other populations. H. hippocampus were significantly larger in Senegal. Hippocampus guttulatus tends to have higher density populations than H. hippocampus when they occur sympatrically. Although these species are often associated with seagrass beds, data show both species inhabit a wide variety of shallow habitats and use a mixture of holdfasts. We suggest an international mosaic of protected areas focused on multiple habitat types as the first step to successful assessment, monitoring and conservation management of these Data Deficient species.

10.
PLoS One ; 12(10): e0186560, 2017.
Article in English | MEDLINE | ID: mdl-29023531

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0177374.].

11.
PLoS One ; 12(5): e0177374, 2017.
Article in English | MEDLINE | ID: mdl-28562602

ABSTRACT

We investigated drivers of reef shark demography across a large and isolated marine protected area, the British Indian Ocean Territory Marine Reserve, using stereo baited remote underwater video systems. We modelled shark abundance against biotic and abiotic variables at 35 sites across the reserve and found that the biomass of low trophic order fish (specifically planktivores) had the greatest effect on shark abundance, although models also included habitat variables (depth, coral cover and site type). There was significant variation in the composition of the shark assemblage at different atolls within the reserve. In particular, the deepest habitat sampled (a seamount at 70-80m visited for the first time in this study) recorded large numbers of scalloped hammerhead sharks (Sphyrna lewini) not observed elsewhere. Size structure of the most abundant and common species, grey reef sharks (Carcharhinus amblyrhynchos), varied with location. Individuals at an isolated bank were 30% smaller than those at the main atolls, with size structure significantly biased towards the size range for young of year (YOY). The 18 individuals judged to be YOY represented the offspring of between four and six females, so, whilst inconclusive, these data suggest the possible use of a common pupping site by grey reef sharks. The importance of low trophic order fish biomass (i.e. potential prey) in predicting spatial variation in shark abundance is consistent with other studies both in marine and terrestrial systems which suggest that prey availability may be a more important predictor of predator distribution than habitat suitability. This result supports the need for ecosystem level rather than species-specific conservation measures to support shark recovery. The observed spatial partitioning amongst sites for species and life-stages also implies the need to include a diversity of habitats and reef types within a protected area for adequate protection of reef-associated shark assemblages.


Subject(s)
Coral Reefs , Sharks , Animals , Demography , Indian Ocean , Population Density
12.
Conserv Biol ; 30(5): 933-49, 2016 10.
Article in English | MEDLINE | ID: mdl-27341487

ABSTRACT

Many drivers of mangrove forest loss operate over large scales and are most effectively addressed by policy interventions. However, conflicting or unclear policy objectives exist at multiple tiers of government, resulting in contradictory management decisions. To address this, we considered four approaches that are being used increasingly or could be deployed in Southeast Asia to ensure sustainable livelihoods and biodiversity conservation. First, a stronger incorporation of mangroves into marine protected areas (that currently focus largely on reefs and fisheries) could resolve some policy conflicts and ensure that mangroves do not fall through a policy gap. Second, examples of community and government comanagement exist, but achieving comanagement at scale will be important in reconciling stakeholders and addressing conflicting policy objectives. Third, private-sector initiatives could protect mangroves through existing and novel mechanisms in degraded areas and areas under future threat. Finally, payments for ecosystem services (PES) hold great promise for mangrove conservation, with carbon PES schemes (known as blue carbon) attracting attention. Although barriers remain to the implementation of PES, the potential to implement them at multiple scales exists. Closing the gap between mangrove conservation policies and action is crucial to the improved protection and management of this imperiled coastal ecosystem and to the livelihoods that depend on them.


Subject(s)
Conservation of Natural Resources , Environmental Policy , Wetlands , Asia, Southeastern , Ecosystem , Forests
13.
Mar Pollut Bull ; 109(2): 772-82, 2016 Aug 30.
Article in English | MEDLINE | ID: mdl-27289287

ABSTRACT

Mangroves provide vital climate change mitigation and adaptation (CCMA) ecosystem services (ES), yet have suffered extensive tropics-wide declines. To mitigate losses, rehabilitation is high on the conservation agenda. However, the relative functionality and ES delivery of rehabilitated mangroves in different intertidal locations is rarely assessed. In a case study from Panay Island, Philippines, using field- and satellite-derived methods, we assess carbon stocks and coastal protection potential of rehabilitated low-intertidal seafront and mid- to upper-intertidal abandoned (leased) fishpond areas, against reference natural mangroves. Due to large sizes and appropriate site conditions, targeted abandoned fishpond reversion to former mangrove was found to be favourable for enhancing CCMA in the coastal zone. In a municipality-specific case study, 96.7% of abandoned fishponds with high potential for effective greenbelt rehabilitation had favourable tenure status for reversion. These findings have implications for coastal zone management in Asia in the face of climate change.


Subject(s)
Conservation of Natural Resources/methods , Wetlands , Carbon , Carbon Sequestration , Ecosystem , Environmental Restoration and Remediation/methods , Philippines , Ponds
14.
Conserv Biol ; 26(2): 324-34, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22098395

ABSTRACT

Alternative occupations are frequently promoted as a means to reduce the number of people exploiting declining fisheries. However, there is little evidence that alternative occupations reduce fisher numbers. Seaweed farming is frequently promoted as a lucrative alternative occupation for artisanal fishers in Southeast Asia. We examined how the introduction of seaweed farming has affected village-level changes in the number of fishers on Danajon Bank, central Philippines, where unsustainable fishing has led to declining fishery yields. To determine how fisher numbers had changed since seaweed farming started, we interviewed the heads of household from 300 households in 10 villages to examine their perceptions of how fisher numbers had changed in their village and the reasons they associated with these changes. We then asked key informants (people with detailed knowledge of village members) to estimate fisher numbers in these villages before seaweed farming began and at the time of the survey. We compared the results of how fisher numbers had changed in each village with the wealth, education, seaweed farm sizes, and other attributes of households in these villages, which we collected through interviews, and with village-level factors such as distance to markets. We also asked people why they either continued to engage in or ceased fishing. In four villages, respondents thought seaweed farming and low fish catches had reduced fisher numbers, at least temporarily. In one of these villages, there was a recent return to fishing due to declines in the price of seaweed and increased theft of seaweed. In another four villages, fisher numbers increased as human population increased, despite the widespread uptake of seaweed farming. Seaweed farming failed for technical reasons in two other villages. Our results suggest seaweed farming has reduced fisher numbers in some villages, a result that may be correlated with socioeconomic status, but the heterogeneity of outcomes is consistent with suggestions that alternative occupations are not a substitute for more direct forms of resource management.


Subject(s)
Aquaculture , Fisheries/statistics & numerical data , Philippines , Socioeconomic Factors
15.
Mar Pollut Bull ; 60(11): 1906-15, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20965522

ABSTRACT

On 1st April 2010, the British Government announced designation of the British Indian Ocean Territory--or Chagos Archipelago--as the world's largest marine protected area (MPA). This near pristine ocean ecosystem now represents 16% of the worlds fully protected coral reef, 60% of the world's no-take protected areas and an uncontaminated reference site for ecological studies. In addition these gains for biodiversity conservation, the Chagos/BIOT MPA also offers subsidiary opportunities to act as a fisheries management tool for the western Indian Ocean, considering its size and location. While the benefits of MPAs for coral-reef dwelling species are established, there is uncertainty about their effects on pelagic migratory species. This paper reviews the increasing body of evidence to demonstrate that positive, measurable reserve effects exist for pelagic populations and that migratory species can benefit from no-take marine reserves.


Subject(s)
Biodiversity , Conservation of Natural Resources , Coral Reefs , Fisheries , Animal Migration , Animals , Ecosystem , Indian Ocean
16.
J Exp Biol ; 210(Pt 3): 432-7, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17234612

ABSTRACT

Uniquely among vertebrates, seahorses and pipefishes (Family Syngnathidae) incubate their eggs within a male brood pouch. This has contributed to a widespread, but poorly founded belief, that the eggs are fertilised using spermatozoa that are deposited directly into the brood pouch via an internal sperm duct. Anatomical dissections showed, however, not only that direct sperm deposition into the pouch is physically impossible, but that spermatozoa must somehow travel a significant distance (>4 mm) outside the body of the male, to reach and fertilise eggs in the pouch. Observations of courtship and mating behaviour also revealed that the pouch closes immediately after mating, and that sperm transfer must occur within a time window of no more than 6 s. In addition to this, the yellow seahorse produces extraordinarily low quantities of dimorphic spermatozoa, but is nevertheless highly fertile and can produce broods that exceed 100 embryos. The entire fertilisation process in seahorses is therefore uniquely efficient among vertebrates, yet paradoxically involves several steps that would seem to complicate, and even appear to prevent, the interaction of the gametes. Although we are still unable to describe the exact fertilisation mechanism, we speculate that spermatozoa are ejaculated into a mixture of ovarian fluid and eggs, while the male and female are in close contact. Thereafter, this mixture must enter the pouch, whereupon the spermatozoa encounter seawater. These observations also support the view, indirectly inferred in previous publications, that sperm competition in seahorses is not only non-existent but impossible.


Subject(s)
Fertilization/physiology , Smegmamorpha/physiology , Spermatozoa/physiology , Animals , Female , Male , Sexual Behavior, Animal , Smegmamorpha/anatomy & histology , Spermatozoa/classification , Spermatozoa/cytology , Testis/anatomy & histology , Testis/physiology
17.
J Exp Biol ; 209(Pt 16): 3055-61, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16888054

ABSTRACT

Seahorses, together with the pipefishes (Family Syngnathidae), are the only vertebrates in which embryonic development takes place within a specialised body compartment, the brood pouch, of the male instead of the female. Embryos develop in close association with the brood pouch epithelium in a manner that bears some resemblance to embryo-placental relationships in mammals. We have explored the hypothesis that parental body size and age should affect offspring postnatal growth and survival if brood pouch quality impacts upon prenatal embryonic nutrition or respiration. Using an aquarium population of the yellow seahorse, Hippocampus kuda, we show here that large parents produce offspring whose initial postnatal growth rates (weeks one to three) were significantly higher than those of the offspring of younger and smaller parents. Whereas 90% of offspring from the larger parents survived for the duration of the study (7 weeks), less that 50% of offspring from smaller parents survived for the same period. For the offspring of large parents, growth rates from individual males were negatively correlated with the number of offspring in the cohort (r=-0.82; P<0.05); this was not the case for offspring from small parents (r=0.048; P>0.9). Observations of embryos within the pouch suggested that when relatively few embryos are present they may attach to functionally advantageous sites and thus gain physiological support during gestation. These results suggest that male body size, and pouch size and function, may influence the future fitness and survival of their offspring.


Subject(s)
Fertility , Smegmamorpha/anatomy & histology , Smegmamorpha/physiology , Age Factors , Animals , Body Size , Embryonic Development , Male , Mortality , Smegmamorpha/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...