Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Thorax ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373824

ABSTRACT

BACKGROUND: In patients with asthma, respiratory syncytial virus (RSV) infections can cause disease exacerbation by infecting the epithelial layer of the airways, inducing subsequent immune response. The type I interferon antiviral response of epithelial cells upon RSV infection is found to be reduced in asthma in most-but not all-studies. Moreover, the molecular mechanisms causing the differences in the asthmatic bronchial epithelium in response to viral infection are poorly understood. METHODS: Here, we investigated the transcriptional response to RSV infection of primary bronchial epithelial cells (pBECs) from patients with asthma (n=8) and healthy donors (n=8). The pBECs obtained from bronchial brushes were differentiated in air-liquid interface conditions and infected with RSV. After 3 days, cells were processed for single-cell RNA sequencing. RESULTS: A strong antiviral response to RSV was observed for all cell types, for all samples (p<1e-48). Most (1045) differentially regulated genes following RSV infection were found in cells transitioning to secretory cells. Goblet cells from patients with asthma showed lower expression of genes involved in the interferon response (false discovery rate <0.05), including OASL, ICAM1 and TNFAIP3. In multiciliated cells, an impairment of the signalling pathways involved in the response to RSV in asthma was observed. CONCLUSION: Our results highlight that the response to RSV infection of the bronchial epithelium in asthma and healthy airways was largely similar. However, in asthma, the response of goblet and multiciliated cells is impaired, highlighting the need for studying airway epithelial cells at high resolution in the context of asthma exacerbation.

2.
Nat Med ; 29(6): 1563-1577, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37291214

ABSTRACT

Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.


Subject(s)
COVID-19 , Lung Neoplasms , Pulmonary Fibrosis , Humans , Lung , Lung Neoplasms/genetics , Macrophages
3.
ERJ Open Res ; 9(2)2023 Mar.
Article in English | MEDLINE | ID: mdl-37020836

ABSTRACT

Studying the effects of asthma SNPs on alternative splicing can lead to new insights into asthma pathophysiology. More specifically, a 17q12 SNP is associated to alternative splicing of GSDMB. https://bit.ly/3W49oTs.

4.
Lancet Respir Med ; 11(1): 55-64, 2023 01.
Article in English | MEDLINE | ID: mdl-35907424

ABSTRACT

BACKGROUND: Persistent airflow limitation (PAL) occurs in a subset of patients with asthma. Previous studies on PAL in asthma have included relatively small populations, mostly restricted to severe asthma, or have no included longitudinal data. The aim of this post-hoc analysis was to investigate the determinants, clinical implications, and outcome of PAL in patients with asthma who were included in the ATLANTIS study. METHODS: In this post-hoc analysis of the ATLANTIS study, we assessed the prevalence, clinical characteristics, and implications of PAL across the full range of asthma severity. The study population included patients aged 18-65 years who had been diagnosed with asthma at least 6 months before inclusion. We defined PAL as a post-bronchodilator FEV1/forced vital capacity (FVC) of less than the lower limit of normal at recruitment. Asthma severity was defined according to the Global Initiative for Asthma. We used Mann-Whitney U test, t test, or χ2 test to analyse differences in baseline characteristics between patients with and without PAL. Logistic regression was used for multivariable analysis of the associations between PAL and baseline data. Cox regression was used to analyse risk of exacerbation in relation to PAL, and a linear mixed-effects model was used to analyse change in FEV1 over time in patients with versus patients without PAL. Results were validated in the U-BIOPRED cohort. FINDINGS: Between June 30, 2014 and March 3, 2017, 773 patients were enrolled in the ATLANTIS study of whom 760 (98%) had post-bronchodilator FEV1/FVC data available. Of the included patients with available data, mean age was 44 years (SD 13), 441 (58%) of 760 were women, 578 (76%) were never-smokers, and 248 (33%) had PAL. PAL was not only present in patients with severe asthma, but also in 21 (16%) of 133 patients with GINA step 1 and 24 (29%) of 83 patients with GINA step 2. PAL was independently associated with older age at baseline (46 years in PAL group vs 43 years in non-PAL group), longer duration of asthma (24 years vs 12 years), male sex (51% vs 38%), higher blood eosinophil counts (median 0·27 × 109 cells per L vs 0·20 × 109 cells per L), more small airway dysfunction, and more exacerbations during 1 year of follow-up. Associations between PAL, age, and eosinophilic inflammation were validated in the U-BIOPRED cohort, whereas associations with sex, duration of asthma, and risk of exacerbations were not validated. INTERPRETATION: PAL is not only present in severe disease, but also in a considerable proportion of patients with milder disease. In patients with mild asthma, PAL is associated with eosinophilic inflammation and a higher risk of exacerbations. Our findings are important because they suggest that increasing treatment intensity should be considered in patients with milder asthma and PAL. FUNDING: Chiesi Farmaceutici and Dutch Ministry of Economic Affairs and Climate Policy (by means of the public-private partnership programme).


Subject(s)
Asthma , Bronchodilator Agents , Humans , Male , Female , Bronchodilator Agents/therapeutic use , Forced Expiratory Volume , Asthma/drug therapy , Phenotype , Inflammation/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...