Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 647: 123546, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37884213

ABSTRACT

Liquid crystal (LC)-based nanoformulations may efficiently deliver drugs and therapeutics to targeted biological sites. Lyotropic liquid crystalline phases (LLCPs) have received much interest in recent years due to their unique structural characteristics of both isotropic liquids and crystalline solids. These LLCPs can be utilized as promising drug delivery systems to deliver drugs, proteins, peptides and vaccines because of their improved drug loading, stabilization, and controlled drug release. The effects of molecule shape, microsegregation, and chirality are very important in the formation of liquid crystalline phases (LCPs). Homogenization of self-assembled amphiphilic lipids, water and stabilizers produces LLCPs with different types of mesophases, bicontinuous cubic (cubosomes) and inverse hexagonal (hexosomes). Moreover, many studies have also shown higher bioadhesivity and biocompatibility of LCs due to their structural resemblance to biological membranes, thus making them more efficient for targeted drug delivery. In this review, an outline of the engineering aspects of LLCPs and polymer-based LLCPs is summarized. Moreover, it covers parenteral, oral, transdermal delivery and medical imaging of LC in targeting various tissues and is discussed with a scope to design more efficient next-generation novel nanosystems. In addition, a detailed overview of advanced liquid crystal-based drug delivery for vaccines and biomedical applications is reviewed.


Subject(s)
Liquid Crystals , Vaccines , Liquid Crystals/chemistry , Lipids/chemistry , Drug Delivery Systems/methods , Pharmaceutical Preparations
2.
Pharmaceutics ; 15(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37765237

ABSTRACT

The current research aims to improve the solubility of the poorly soluble drug, i.e., ibuprofen, by developing self-emulsifying drug delivery systems (SEDDS) utilizing a twin screw melt granulation (TSMG) approach. Gelucire® 44/14, Gelucire® 48/16, and Transcutol® HP were screened as suitable excipients for developing the SEDDS formulations. Initially, liquid SEDDS (L-SEDDS) were developed with oil concentrations between 20-50% w/w and surfactant to co-surfactant ratios of 2:1, 4:1, 6:1. The stable formulations of L-SEDDS were transformed into solid SEDDS (S-SEDDS) using a suitable adsorbent carrier and compressed into tablets (T-SEDDS). The S-SEDDS has improved flow, drug release profiles, and permeability compared to pure drugs. The existence of the drug in an amorphous state was confirmed by differential scanning calorimetry (DSC) and powder X-ray diffraction analysis (PXRD). The formulations with 20% w/w and 30% w/w of oil concentration and a 4:1 ratio of surfactant to co-surfactant have resulted in a stable homogeneous emulsion with a globule size of 14.67 ± 0.23 nm and 18.54 ± 0.55 nm. The compressed tablets were found stable after six months of storage at accelerated and long-term conditions. This shows the suitability of the TSMG approach as a single-step continuous manufacturing process for developing S-SEDDS formulations.

3.
Article in English | MEDLINE | ID: mdl-37124158

ABSTRACT

Aqueous solubility is one of the key parameters for achieving the desired drug concentration in systemic circulation for better therapeutic outcomes. Carbamazepine (CBZ) is practically insoluble in water, is a BCS class II drug, and exhibits dissolution-dependent oral bioavailability. This study explored a novel application of hot-melt extrusion in the manufacture and development of a thermodynamically stable solid crystal suspension (SCS) to improve the solubility and dissolution rate of CBZ. The SCSs were prepared using sugar alcohols, such as mannitol or xylitol, as crystalline carriers. The drug-sugar blend was processed by hot melt extrusion up to 40 % (w/w) drug loading. The extruded SCS was evaluated for drug content, saturation solubility, differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), in vitro release, and stability studies. The physicochemical characterization revealed the highly crystalline existence of pure drug, pure carriers, and extruded SCS. FTIR analysis did not reveal any physical or chemical incompatibilities between the drug and sugar alcohols and showed a homogeneous CBZ distribution within respective crystalline carriers. The SEM micrographs of the solidified SCS revealed the presence of approximately 100 µm crystalline agglomerates. In vitro dissolution and solubility studies showed that the CBZ dissolution rate and solubility were improved significantly from both crystalline carriers for all tested drug loads. The SCSs showed no significant changes in drug content, in vitro release profiles, and thermal characteristics over 3 months of storage at accelerated stability conditions (40±2°C/75±5% RH). As a result, it can be inferred that the SCS strategy can be employed as a contemporary alternative technique to improve the dissolution rate of BCS class II drugs via HME technology.

4.
Int J Pharm X ; 5: 100156, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36636366

ABSTRACT

This work developed high drug-load pellets for colon targeting in minimal steps by coupling hot-melt extrusion (HME) with a die-surface cutting pelletizer, offering a potential continuous pellet manufacturing process. Ketoprofen (KTP) was selected as a model drug for this study due to its thermal stability and severe upper gastrointestinal side effects. Low and high methoxyl grade pectins were the enzyme-triggered release matrix, and hydroxypropyl methylcellulose (HME 4 M/HME 100LV) was used as a premature release-retarding agent. The powder X-ray diffraction technique and the differential scanning calorimetry results revealed that KTP exists in the solid-solution state within the polymeric matrix after the HME step. The scanning electron micrographs of the fabricated pellets showed a smooth surface without any cracks. The lead formulation showed the lowest premature drug release (∼13%) with an extended KTP release profile over a 24 h period in the presence and absence of the release-triggering enzyme. The lead formulation was stable for 3 months at accelerated stability conditions (40 °C/75 ± 5% RH) concerning drug content, in vitro release, and thermal characteristics. In summary, coupling HME and pelletization processes could be a promising technology for developing colon-targeted drug delivery systems.

5.
Nanotheranostics ; 7(1): 70-89, 2023.
Article in English | MEDLINE | ID: mdl-36593800

ABSTRACT

Recent advances in drug delivery technologies utilizing a variety of carriers have resulted in a paradigm shift in the current approach to diagnosis and therapy. Mesoporous silica nanoparticles (MSNs) were developed in response to the need for materials with high thermal, chemical, and mechanical properties. The synthesis, ease of surface functionalization, tunable pore size, large surface area, and biocompatibility of MSNs make them useful in a variety of biomedical applications such as drug delivery, theranostics, and stem cell research. In addition, MSNs have a high capability of delivering actives ranging from small molecules such as drugs and amino acids to larger peptides, vaccines, and antibodies in general. Moreover, MSN-based transdermal delivery has sparked a lot of interest because of the increase in drug stability, permeation, and ease of functionalization. The functionalization of MSNs plays an important role in the efficient delivery of therapeutic agents in a highly controlled manner. This review introduced dermal and transdermal drug delivery systems, explained the anatomy of the skin, and summarized different barriers that affect the transdermal delivery of many therapeutic agents. In addition, the fundamentals of MSNs together with their physicochemical properties, synthesis approaches, raw materials used in their fabrication, and factors affecting their physicochemical properties will be covered. Moreover, the applications of MSNs in dermal and transdermal delivery, the biocompatibility of MSNs in terms of toxicity and safety, and biodistribution will be explained with the help of a detailed literature review. The review is covering the current and future perspectives of MSNs in the pharmaceutical field with therapeutic applications.


Subject(s)
Drug Carriers , Nanoparticles , Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Porosity , Silicon Dioxide/chemistry , Tissue Distribution
6.
AAPS PharmSciTech ; 24(1): 47, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36703024

ABSTRACT

The current research is focused on investigating the suitability of the twin screw melt granulation (TSMG) approach for improving the solubility of a non-steroidal anti-inflammatory (NSAIDs) drug (ibuprofen), by developing granules using lipid surfactants. The solubility of the drug within the solid lipid excipients (Gelucire® 48/16 and Gelucire® 50/13) was determined by differential scanning calorimetry (DSC). The formulations were developed for drug and lipid ratios of 1:1.5, 1:3, and 1:4.5 using Neusilin® US2 as a solid adsorbent carrier. The solid-state properties of the drug investigated using differential scanning calorimetry (DSC) have revealed the conversion of the drug to an amorphous form for 1:3 and 1:4.5 ratios of formulations confirmed by powder x-ray diffraction analysis (PXRD). Drug-excipient compatibility and formation of no interactions were characterized using Fourier transform infrared spectroscopy (FTIR). The granules with a 1:3 and 1:4.5 ratios of drug and lipid have improved drug dissolution and permeation, attributing to the formation of micellar emulsions. The stability of formulation with a 1:3 ratio of drug and lipid surfactant was preserved when stored in accelerated conditions. However, the formulation with a 1:4.5 ratio of drug and lipid failed to retain the amorphous state evidenced by the recrystallization of the drug. This shows the suitability of TSMG as a single-step continuous manufacturing process for developing melt granules to improve the solubility of poorly water-soluble drug substances.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Ibuprofen , Ibuprofen/chemistry , Solubility , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Excipients/chemistry , Lipids , Permeability , Drug Compounding/methods , Calorimetry, Differential Scanning , X-Ray Diffraction
7.
Pharmaceutics ; 14(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36559129

ABSTRACT

The surface drying process is an important technology in the pharmaceutical, biomedical, and food industries. The final stage of formulation development (i.e., the drying process) faces several challenges, and overall mastering depends on the end step. The advent of new emerging technologies paved the way for commercialization. Thin film freezing (TFF) is a new emerging freeze-drying technique available for various treatment modalities in drug delivery. TFF has now been used for the commercialization of pharmaceuticals, food, and biopharmaceutical products. The present review highlights the fundamentals of TFF along with modulated techniques used for drying pharmaceuticals and biopharmaceuticals. Furthermore, we have covered various therapeutic applications of TFF technology in the development of nanoformulations, dry powder for inhalations and vaccines. TFF holds promise in delivering therapeutics for lung diseases such as fungal infection, bacterial infection, lung dysfunction, and pneumonia.

8.
Int J Pharm ; 628: 122283, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36244563

ABSTRACT

The development of amorphous solid dispersions (ASDs) of high-melting-point drug substances using hot-melt extrusion (HME) continues to be challenging because of the limited availability of polymers that are stable at high processing temperatures. The main aim of this research project is to improve processability and develop three-dimensional (3D) cocrystal printlets of hydrochlorothiazide (HCTZ) using HME paired fused deposition modeling (FDM) techniques. Among the investigated coformers, nicotinamide (NIC) was identified as a suitable coformer. The cocrystal filaments of HCTZ-NIC and pure HCTZ that were suitable for the FDM 3D-printing process were developed using a Process 11 mm Twin -Screw Extruder with Kollicoat® IR and Kollidon® VA64 as polymeric carriers. The investigation of extruded filaments using differential scanning calorimetry (DSC) revealed the formation of HCTZ-NIC cocrystals, which was further confirmed using Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction analysis (PXRD). The 3D-printed printlets of HCTZ-NIC with 50 % infill density resulted in improved dissolution and permeability compared to pure drug. This demonstrates the suitability of the HME-paired FDM 3D-printing technique for improving solubility and developing on-demand patient-focused dosage forms for poorly soluble high-melting-point drug substances by utilizing a cocrystal approach.


Subject(s)
Hot Melt Extrusion Technology , Hydrochlorothiazide , Humans , Feasibility Studies , Tablets/chemistry , Solubility , Polymers/chemistry , Printing, Three-Dimensional , Drug Liberation
9.
Pharmaceutics ; 14(9)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36145555

ABSTRACT

Among various drug administration routes, oral drug delivery is preferred and is considered patient-friendly; hence, most of the marketed drugs are available as conventional tablets or capsules. In such cases, the administration of drugs with or without food has tremendous importance on the bioavailability of the drugs. The presence of food may increase (positive effect) or decrease (negative effect) the bioavailability of the drug. Such a positive or negative effect is undesirable since it makes dosage estimation difficult in several diseases. This may lead to an increased propensity for adverse effects of drugs when a positive food effect is perceived. However, a negative food effect may lead to therapeutic insufficiency for patients suffering from life-threatening disorders. This review emphasizes the causes of food effects, formulation strategies to overcome the fast-fed variability, and the regulatory aspects of drugs with food effects, which may open new avenues for researchers to design products that may help to eliminate fast-fed variability.

10.
Pharmaceutics ; 14(9)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36145608

ABSTRACT

With the growing burden of cancer, parallel advancements in anticancer nanotechnological solutions have been witnessed. Among the different types of cancers, breast cancer accounts for approximately 25% and leads to 15% of deaths. Nanomedicine and its allied fields of material science have revolutionized the science of medicine in the 21st century. Novel treatments have paved the way for improved drug delivery systems that have better efficacy and reduced adverse effects. A variety of nanoformulations using lipids, polymers, inorganic, and peptide-based nanomedicines with various functionalities are being synthesized. Thus, elaborate knowledge of these intelligent nanomedicines for highly promising drug delivery systems is of prime importance. Polymeric micelles (PMs) are generally easy to prepare with good solubilization properties; hence, they appear to be an attractive alternative over the other nanosystems. Although an overall perspective of PM systems has been presented in recent reviews, a brief discussion has been provided on PMs for breast cancer. This review provides a discussion of the state-of-the-art PMs together with the most recent advances in this field. Furthermore, special emphasis is placed on regulatory guidelines, clinical translation potential, and future aspects of the use of PMs in breast cancer treatment. The recent developments in micelle formulations look promising, with regulatory guidelines that are now more clearly defined; hence, we anticipate early clinical translation in the near future.

11.
Pharmaceutics ; 14(9)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36145632

ABSTRACT

Solid lipid nanoparticles (SLNs) are an alternate carrier system to liposomes, polymeric nanoparticles, and inorganic carriers. SLNs have attracted increasing attention in recent years for delivering drugs, nucleic acids, proteins, peptides, nutraceuticals, and cosmetics. These nanocarriers have attracted industrial attention due to their ease of preparation, physicochemical stability, and scalability. These characteristics make SLNs attractive for manufacture on a large scale. Currently, several products with SLNs are in clinical trials, and there is a high possibility that SLN carriers will quickly increase their presence in the market. A large-scale manufacturing unit is required for commercial applications to prepare enough formulations for clinical studies. Furthermore, continuous processing is becoming more popular in the pharmaceutical sector to reduce product batch-to-batch differences. This review paper discusses some conventional methods and the rationale for large-scale production. It further covers recent progress in scale-up methods for the synthesis of SLNs, including high-pressure homogenization (HPH), hot melt extrusion coupled with HPH, microchannels, nanoprecipitation using static mixers, and microemulsion-based methods. These scale-up technologies enable the possibility of commercialization of SLNs. Furthermore, ongoing studies indicate that these technologies will eventually reach the pharmaceutical market.

12.
Cells ; 11(15)2022 08 06.
Article in English | MEDLINE | ID: mdl-35954282

ABSTRACT

Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients' quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.


Subject(s)
Quality of Life , Wound Healing , Bandages , Humans , Skin/injuries , Skin Physiological Phenomena
13.
J Pharm Anal ; 12(2): 287-292, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35582396

ABSTRACT

Docosanol is the only US Food and Drug Administration (FDA) approved over-the-counter topical product for treating recurrent oral-facial herpes simplex labialis. Validated analytical methods for docosanol are required to demonstrate the bioequivalence of docosanol topical products. A gas chromatography/selected ion monitoring mode mass spectrometry (GC/SIM-MS) method was developed and validated for docosanol determination in biological samples. Docosanol and isopropyl palmitate (internal standard) were separated on a high-polarity GC capillary column with (88% cyanopropy)aryl-polysiloxane employed as the stationary phase. The ions of m/z 83 and 256 were selected to monitor docosanol and isopropyl palmitate, respectively; the total run time was 20 min. The GC/SIM-MS method was validated in accordance with US FDA guidelines, and the results met the US FDA acceptance criteria. The docosanol calibration standards were linear in the 100-10000 ng/mL concentration range (R 2>0.994). The recoveries for docosanol from the receptor fluid and skin homogenates were >93.2% and >95.8%, respectively. The validated method was successfully applied to analyze ex vivo human cadaver skin permeation samples. On applying Abreva® cream tube and Abreva® cream pump, the amount of docosanol that penetrated human cadaver skin at 48 h was 21.5 ± 7.01 and 24.0 ± 6.95 ng/mg, respectively. Accordingly, we concluded that the validated GC/SIM-MS was sensitive, specific, and suitable for quantifying docosanol as a quality control tool. This method can be used for routine analysis as a cost-effective alternative to other techniques.

14.
Drug Discov Today ; 27(8): 2322-2332, 2022 08.
Article in English | MEDLINE | ID: mdl-35460893

ABSTRACT

Age-related macular degeneration (AMD) is a macular degenerative eye disease, the major cause of irreversible loss of central vision. In this review, we highlight current progress and future perspectives of novel and investigational therapeutic strategies in the drug pipeline, including anti-vascular endothelial growth factor (VEGF) agents, bispecific antibodies, biosimilars, small molecules, gene therapy, and long-acting drug delivery strategies for both dry and wet AMD. We anticipate that biologics with dual functionalities and combined therapies with long-acting capabilities will lead the wet AMD pipeline. Sustained-release platforms also show potential. However, significant breakthroughs are yet to be made for dry AMD. The personalized approach might be well suited in the scenario of diverse genetic variations in both conditions.


Subject(s)
Biosimilar Pharmaceuticals , Wet Macular Degeneration , Angiogenesis Inhibitors/therapeutic use , Biosimilar Pharmaceuticals/therapeutic use , Genetic Therapy , Humans , Therapies, Investigational , Vascular Endothelial Growth Factor A , Wet Macular Degeneration/drug therapy
15.
Int J Pharm ; 615: 121471, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35041915

ABSTRACT

Nucleation inhibition and maintenance of drug supersaturation over a prolonged period are desirable for improving oral absorption of amorphous solid dispersions. The present study investigates the impact of binary and ternary amorphous solid dispersions on the supersaturation kinetics of nifedipine using the polymers hydroxypropylmethylcellulose acetate succinate (HPMCAS) LG, and HG, Eudragit® RSPO, Eudragit® FS100, Kollidon® VA64 and Plasdone™ K-29/32. The amorphous solubility, nucleation induction time, and particle size analysis of nifedipine in a supersaturated solution were performed with and without the presence of polymers, alone or in combination. The HPMCAS-HG and HPMCAS-HG + LG combinations showed the highest nifedipine amorphous solubility of 169.47, 149.151 µg/mL, respectively and delay in nucleation induction time up to 120 min compared to other polymeric combinations. The solid dispersions prepared via hot melt extrusion showed the transformation of crystalline nifedipine to amorphous form. The in-vitro non-sink dissolution study revealed that although the binary nifedipine/HPMCAS-LG system had shown the greater supersaturation concentration of 66.1 µg/mL but could not maintain a supersaturation level up to 360 min. A synergistic effect emerged for ternary nifedipine/HPMCAS-LG/HPMCAS-HG, and nifedipine/HPMCAS-LG/Eudragit®FS100 systems maintained the supersaturation level with enhanced dissolution performance, demonstrating the potential of polymeric combinations for improved amorphous solid dispersion performance.


Subject(s)
Methylcellulose , Polymers , Kinetics , Methylcellulose/analogs & derivatives , Solubility
16.
AAPS PharmSciTech ; 23(1): 63, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35091878

ABSTRACT

Efinaconazole is the first azole derivative approved by FDA for the topical treatment of onychomycosis. The objective of present study was to develop and validate HPLC method for estimation of efinaconazole in ex vivo human nail permeation study samples. The chromatographic analysis was performed on a HPLC system equipped with diode array detector. The efinaconazole and internal standard (IS) were extracted from the human nail samples by using the protein precipitation method. The samples were injected on to 5 µm Polar C18 100Å, 4.6 mm × 150 mm column. The mobile phase consisted of 0.01 M potassium dihydrogen phosphate: acetonitrile (36:64) and eluent was monitored at 205 nm. The chromatographic separation of drug and analyte was achieved using isocratic elution at flow rate of 1 mL/min with a total run time of 15 min. The efinaconazole and IS were eluted at 6.4 ± 0.5 and 8.3 ± 0.5 min, respectively. The developed method was validated as per FDA guidelines, and the results met with acceptance criteria. The method developed was specific, and the analyte concentrations were linear at range of 50 to 10000 ng/mL (R2 ≥ 0.9981). The validated HPLC method was applied for quantifying efinaconazole in human nail permeation study samples. The permeation of efinaconazole was increased by twofolds with Labarfac CC (15135.4 ± 2233.9 ng/cm2) compared to formulations containing Transcutol P (6892.0 ± 557.6 ng/cm2) and Labrasol (7266.1 ± 790.6 ng/cm2). The study results demonstrate that developed efinaconazole HPLC method can be employed for formulation evaluation and clinical studies.


Subject(s)
Onychomycosis , Triazoles , Chromatography, High Pressure Liquid , Humans , Nails , Onychomycosis/drug therapy
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-931256

ABSTRACT

Docosanol is the only US Food and Drug Administration(FDA)approved over-the-counter topical product for treating recurrent oral-facial herpes simplex labialis.Validated analytical methods for docosanol are required to demonstrate the bioequivalence of docosanol topical products.A gas chromatography/selected ion monitoring mode mass spectrometry(GC/SIM-MS)method was developed and validated for docosanol determination in biological samples.Docosanol and isopropyl palmitate(internal standard)were separated on a high-polarity GC capillary column with(88%cyanopropy)aryl-polysiloxane employed as the stationary phase.The ions of m/z 83 and 256 were selected to monitor docosanol and isopropyl palmitate,respectively;the total run time was 20 min.The GC/SIM-MS method was validated in accordance with US FDA guidelines,and the results met the US FDA acceptance criteria.The docosanol calibration standards were linear in the 100-10000 ng/mL concentration range(R2>0.994).The recoveries for docosanol from the receptor fluid and skin homogenates were>93.2%and>95.8%,respectively.The validated method was successfully applied to analyze ex vivo human cadaver skin permeation samples.On applying Abreva?cream tube and Abreva?cream pump,the amount of doco-sanol that penetrated human cadaver skin at 48 h was 21.5±7.01 and 24.0±6.95 ng/mg,respectively.Accordingly,we concluded that the validated GC/SIM-MS was sensitive,specific,and suitable for quantifying docosanol as a quality control tool.This method can be used for routine analysis as a cost-effective alternative to other techniques.

18.
Int Immunopharmacol ; 69: 34-49, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30665042

ABSTRACT

Rohitukine (referred to as RHK) is a bioactive chromone alkaloid isolated from the leaves of plant Dysoxylum binectariferum, which has been reported to possess diverse pharmacological properties for the treatment of inflammatory bowel disease (IBD), diarrhoea and anti-lipidemic. However, the underlying mechanism by which RHK exerts its anti-inflammatory activity has not yet demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of RHK using lipopolysaccharide (LPS) - stimulated J774A.1 macrophage cells and in-vivo inflammatory models. Results demonstrated that RHK treatment could significantly decrease the LPS-induced production of nitric oxide, prostaglandin E2 (PGE2), interleukins (ILs) and tumour necrosis factor (TNF)-α in J774A.1 cells. Molecular studies revealed that RHK inhibited the activation of upstream mediator nuclear factor-κB by suppressing the phosphorylation of IκBα and p65. In in-vivo experiments showed prominent anti-inflammatory activity of RHK. Thus, RHK could be considered as a promising candidate for the treatment of inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Chromones/therapeutic use , Inflammation/drug therapy , Macrophages/drug effects , NF-kappa B/metabolism , Piperidines/therapeutic use , Animals , Cell Line , Dinoprostone/metabolism , Humans , Interleukins/metabolism , Lipopolysaccharides/immunology , Macrophages/immunology , Male , Meliaceae/immunology , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Rats , Rats, Wistar , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...