Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(36): e2402723121, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39186658

ABSTRACT

Recent advancements in functional neuroimaging have demonstrated that some unresponsive patients in the intensive care unit retain a level of consciousness that is inconsistent with their behavioral diagnosis of awareness. Functional near-infrared spectroscopy (fNIRS) is a portable optical neuroimaging method that can be used to measure neural activity with good temporal and spatial resolution. However, the reliability of fNIRS for detecting the neural correlates of consciousness remains to be established. In a series of studies, we evaluated whether fNIRS can record sensory, perceptual, and command-driven neural processing in healthy participants and in behaviorally nonresponsive patients. At the individual healthy subject level, we demonstrate that fNIRS can detect commonly studied resting state networks, sensorimotor processing, speech-specific auditory processing, and volitional command-driven brain activity to a motor imagery task. We then tested fNIRS with three acutely brain injured patients and found that one could willfully modulate their brain activity when instructed to imagine playing a game of tennis-providing evidence of preserved consciousness despite no observable behavioral signs of awareness. The successful application of fNIRS for detecting preserved awareness among behaviorally nonresponsive patients highlights its potential as a valuable tool for uncovering hidden cognitive states in critical care settings.


Subject(s)
Brain Injuries , Consciousness , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Consciousness/physiology , Male , Adult , Female , Brain Injuries/physiopathology , Brain Injuries/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Middle Aged , Functional Neuroimaging/methods , Young Adult
3.
J Neurol ; 270(12): 6071-6080, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37665382

ABSTRACT

OBJECTIVE: There is a lack of reliable tools used to predict functional recovery in unresponsive patients following a severe brain injury. The objective of the study is to evaluate the prognostic utility of resting-state functional magnetic resonance imaging for predicting good neurologic recovery in unresponsive patients with severe brain injury in the intensive-care unit. METHODS: Each patient underwent a 5.5-min resting-state scan and ten resting-state networks were extracted via independent component analysis. The Glasgow Outcome Scale was used to classify patients into good and poor outcome groups. The Nearest Centroid classifier used each patient's ten resting-state network values to predict best neurologic outcome within 6 months post-injury. RESULTS: Of the 25 patients enrolled (mean age = 43.68, range = [19-69]; GCS ≤ 9; 6 females), 10 had good and 15 had poor outcome. The classifier correctly and confidently predicted 8/10 patients with good and 12/15 patients with poor outcome (mean = 0.793, CI = [0.700, 0.886], Z = 2.843, p = 0.002). The prediction performance was largely determined by three visual (medial: Z = 3.11, p = 0.002; occipital pole: Z = 2.44, p = 0.015; lateral: Z = 2.85, p = 0.004) and the left frontoparietal network (Z = 2.179, p = 0.029). DISCUSSION: Our approach correctly identified good functional outcome with higher sensitivity (80%) than traditional prognostic measures. By revealing preserved networks in the absence of discernible behavioral signs, functional connectivity may aid in the prognostic process and affect the outcome of discussions surrounding withdrawal of life-sustaining measures.


Subject(s)
Brain Injuries , Magnetic Resonance Imaging , Female , Humans , Adult , Magnetic Resonance Imaging/methods , Brain Injuries/diagnostic imaging , Prognosis , Occipital Lobe , Brain/diagnostic imaging
4.
J Cogn Neurosci ; 35(4): 603-627, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36626358

ABSTRACT

Despite its unlimited capacity, not all visual information we encounter is encoded into visual long-term memory. Traditionally, variability in encoding success has been ascribed to variability in the types and efficacy of an individual's cognitive processes during encoding. Accordingly, past studies have identified several neural correlates of variability in encoding success, namely, frontal positivity, occipital alpha amplitude, and frontal theta amplitude, by contrasting the electrophysiological signals recorded during successful and failed encoding processes (i.e., subsequent memory). However, recent research demonstrated individuals remember and forget consistent sets of stimuli, thereby elucidating stimulus-intrinsic factors (i.e., memorability) that determine the ease of memory encoding independent of individual-specific variability in encoding processes. The existence of memorability raises the possibility that canonical EEG correlates of subsequent memory may reflect variability in stimulus-intrinsic factors rather than individual-specific encoding processes. To test this, we recorded the EEG correlates of subsequent memory while participants encoded 600 images of real-world objects and assessed the unique contribution of individual-specific and stimulus-intrinsic factors on each EEG correlate. Here, we found that frontal theta amplitude and occipital alpha amplitude were only influenced by individual-specific encoding success, whereas frontal positivity was influenced by stimulus-intrinsic and individual-specific encoding success. Overall, our results offer novel interpretations of canonical EEG correlates of subsequent memory by demonstrating a dissociable impact of stimulus-intrinsic and individual-specific factors of memory encoding success.


Subject(s)
Memory, Long-Term , Mental Recall , Humans , Electroencephalography
5.
Psychon Bull Rev ; 30(1): 317-330, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36002718

ABSTRACT

Despite the massive capacity of visual long-term memory, individuals do not successfully encode all visual information they wish to remember. This variability in encoding success has been traditionally ascribed to fluctuations in individuals' cognitive states (e.g., sustained attention) and differences in memory encoding processes (e.g., depth of encoding). However, recent work has shown that a considerable amount of variability in encoding success stems from intrinsic stimulus properties that determine the ease of encoding across individuals. While researchers have identified several perceptual and semantic properties that contribute to stimulus memorability, much remains unknown, including whether individuals are aware of the memorability of stimuli they encounter. In the present study, we investigated whether individuals have conscious access to the memorability of real-world stimuli while forming self-referential judgments of learning (JOL) during explicit memory encoding (Experiments 1A-B) and when asked about the perceived memorability of a stimulus in the absence of attempted encoding (Experiments 2A-B). We found that JOLs and perceived memorability estimates (PME) were consistent across individuals and predictive of memorability, confirming that individuals can access memorability with or without stimulus encoding. At the same time, access to memorability was not comprehensive. We found that individuals unexpectedly remembered and forgot consistent sets of stimuli as well. When we compared access to memorability between JOLs and PMEs, we found that individuals had more access during JOLs. Thus, our findings demonstrate that individuals have partial access to stimulus memorability and that explicit encoding increases the amount of access that is available.


Subject(s)
Consciousness , Judgment , Memory , Humans , Learning , Mental Recall
6.
Psychon Bull Rev ; 30(1): 291-302, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36068372

ABSTRACT

It is well-established that stimulus-specific information in visual working memory (VWM) can be systematically biased by new perceptual inputs. These memory biases are commonly attributed to interference that arises when perceptual inputs are physically similar to VWM contents. However, recent work has suggested that explicitly comparing the similarity between VWM contents and new perceptual inputs modulates the size of memory biases above and beyond stimulus-driven effects. Here, we sought to directly investigate this modulation hypothesis by comparing the size of memory biases following explicit comparisons to those induced when new perceptual inputs are ignored (Experiment 1) or maintained in VWM alongside target information (Experiment 2). We found that VWM reports showed larger attraction biases following explicit perceptual comparisons than when new perceptual inputs were ignored or maintained in VWM. An analysis of participants' perceptual comparisons revealed that memory biases were amplified after perceptual inputs were endorsed as similar-but not dissimilar-to one's VWM representation. These patterns were found to persist even after accounting for variability in the physical similarity between the target and perceptual stimuli across trials, as well as the baseline memory precision between the distinct task demands. Together, these findings illustrate a causal role of perceptual comparisons in modulating naturally-occurring memory biases.


Subject(s)
Bias , Memory, Short-Term , Visual Perception , Humans
7.
PLoS One ; 17(9): e0273098, 2022.
Article in English | MEDLINE | ID: mdl-36107951

ABSTRACT

Naked mole-rats are a long-lived rodent species (current lifespan >37 years) and an increasingly popular biomedical model. Naked mole-rats exhibit neuroplasticity across their long lifespan. Previous studies have begun to investigate their neurogenic patterns. Here, we test the hypothesis that neuronal maturation is extended in this long-lived rodent. We characterize cell proliferation and neuronal maturation in established rodent neurogenic regions over 12 months following seven days of consecutive BrdU injection. Given that naked mole-rats are eusocial (high reproductive skew where only a few socially-dominant individuals reproduce), we also looked at proliferation in brain regions relevant to the social-decision making network. Finally, we measured co-expression of EdU (newly-born cells), DCX (immature neuron marker), and NeuN (mature neuron marker) to assess the timeline of neuronal maturation in adult naked mole-rats. This work reaffirms the subventricular zone as the main source of adult cell proliferation and suggests conservation of the rostral migratory stream in this species. Our profiling of socially-relevant brain regions suggests that future work which manipulates environmental context can unveil how newly-born cells integrate into circuitry and facilitate adult neuroplasticity. We also find naked mole-rat neuronal maturation sits at the intersection of rodents and long-lived, non-rodent species: while neurons can mature by 3 weeks (rodent-like), most neurons mature at 5 months and hippocampal neurogenic levels are low (like long-lived species). These data establish a timeline for future investigations of longevity- and socially-related manipulations of naked mole-rat adult neurogenesis.


Subject(s)
Mole Rats , Neurogenesis , Animals , Bromodeoxyuridine , Longevity/physiology , Mole Rats/physiology , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL