Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38526099

ABSTRACT

Cellular pathways that detect DNA damage are useful for identifying genes that suppress DNA damage, which can cause genome instability and cancer predisposition syndromes when mutated. We identified 199 high-confidence and 530 low-confidence DNA damage-suppressing (DDS) genes in Saccharomyces cerevisiae through a whole-genome screen for mutations inducing Hug1 expression, a focused screen for mutations inducing Ddc2 foci, and data from previous screens for mutations causing Rad52 foci accumulation and Rnr3 induction. We also identified 286 high-confidence and 394 low-confidence diverse genome instability-suppressing (DGIS) genes through a whole-genome screen for mutations resulting in increased gross chromosomal rearrangements and data from previous screens for mutations causing increased genome instability as assessed in a diversity of genome instability assays. Genes that suppress both pathways (DDS+ DGIS+) prevent or repair DNA replication damage and likely include genes preventing collisions between the replication and transcription machineries. DDS+ DGIS- genes, including many transcription-related genes, likely suppress damage that is normally repaired properly or prevent inappropriate signaling, whereas DDS- DGIS+ genes, like PIF1, do not suppress damage but likely promote its proper, nonmutagenic repair. Thus, induction of DNA damage markers is not a reliable indicator of increased genome instability, and the DDS and DGIS categories define mechanistically distinct groups of genes.


Subject(s)
DNA Damage , Genomic Instability , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Mutation , Genes, Suppressor , DNA Repair/genetics , Genome, Fungal
2.
Bioessays ; 45(9): e2300031, 2023 09.
Article in English | MEDLINE | ID: mdl-37424007

ABSTRACT

MutL family proteins contain an N-terminal ATPase domain (NTD), an unstructured interdomain linker, and a C-terminal domain (CTD), which mediates constitutive dimerization between subunits and often contains an endonuclease active site. Most MutL homologs direct strand-specific DNA mismatch repair by cleaving the error-containing daughter DNA strand. The strand cleavage reaction is poorly understood; however, the structure of the endonuclease active site is consistent with a two- or three-metal ion cleavage mechanism. A motif required for this endonuclease activity is present in the unstructured linker of Mlh1 and is conserved in all eukaryotic Mlh1 proteins, except those from metamonads, which also lack the almost absolutely conserved Mlh1 C-terminal phenylalanine-glutamate-arginine-cysteine (FERC) sequence. We hypothesize that the cysteine in the FERC sequence is autoinhibitory, as it sequesters the active site. We further hypothesize that the evolutionary co-occurrence of the conserved linker motif with the FERC sequence indicates a functional interaction, possibly by linker motif-mediated displacement of the inhibitory cysteine. This role is consistent with available data for interactions between the linker motif with DNA and the CTDs in the vicinity of the active site.


Subject(s)
DNA Cleavage , Eukaryota , MutL Proteins/chemistry , MutL Proteins/metabolism , Eukaryota/genetics , Eukaryota/metabolism , Cysteine , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , DNA/genetics , Endonucleases/metabolism
3.
Proc Natl Acad Sci U S A ; 119(42): e2212870119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215471

ABSTRACT

Eukaryotic DNA mismatch repair (MMR) depends on recruitment of the Mlh1-Pms1 endonuclease (human MLH1-PMS2) to mispaired DNA. Both Mlh1 and Pms1 contain a long unstructured linker that connects the N- and carboxyl-terminal domains. Here, we demonstrated the Mlh1 linker contains a conserved motif (Saccharomyces cerevisiae residues 391-415) required for MMR. The Mlh1-R401A,D403A-Pms1 linker motif mutant protein was defective for MMR and endonuclease activity in vitro, even though the conserved motif could be >750 Å from the carboxyl-terminal endonuclease active site or the N-terminal adenosine triphosphate (ATP)-binding site. Peptides encoding this motif inhibited wild-type Mlh1-Pms1 endonuclease activity. The motif functioned in vivo at different sites within the Mlh1 linker and within the Pms1 linker. Motif mutations in human cancers caused a loss-of-function phenotype when modeled in S. cerevisiae. These results suggest that the Mlh1 motif promotes the PCNA-activated endonuclease activity of Mlh1-Pms1 via interactions with DNA, PCNA, RFC, or other domains of the Mlh1-Pms1 complex.


Subject(s)
Neoplasms , Saccharomyces cerevisiae Proteins , Adenosine Triphosphate/metabolism , DNA/metabolism , DNA Mismatch Repair/genetics , DNA-Binding Proteins/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Humans , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , MutL Proteins , MutS Homolog 2 Protein/metabolism , Mutant Proteins/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
4.
DNA Repair (Amst) ; 119: 103405, 2022 11.
Article in English | MEDLINE | ID: mdl-36122480

ABSTRACT

Eukaryotic DNA mismatch repair (MMR) initiates through mispair recognition by the MutS homologs Msh2-Msh6 and Msh2-Msh3 and subsequent recruitment of the MutL homologs Mlh1-Pms1 (human MLH1-PMS2). In bacteria, MutL is recruited by interactions with the connector domain of one MutS subunit and the ATPase and core domains of the other MutS subunit. Analysis of the S. cerevisiae and human homologs have only identified an interaction between the Msh2 connector domain and Mlh1. Here we investigated whether a conserved Msh6 ATPase/core domain-Mlh1 interaction and an Msh2-Msh6 interaction with Pms1 also act in MMR. Mutations in MLH1 affecting interactions with both the Msh2 and Msh6 interfaces caused MMR defects, whereas equivalent pms1 mutations did not cause MMR defects. Mutant Mlh1-Pms1 complexes containing Mlh1 amino acid substitutions were defective for recruitment to mispaired DNA by Msh2-Msh6, did not support MMR in reconstituted Mlh1-Pms1-dependent MMR reactions in vitro, but were proficient in Msh2-Msh6-independent Mlh1-Pms1 endonuclease activity. These results indicate that Mlh1, the common subunit of the Mlh1-Pms1, Mlh1-Mlh2, and Mlh1-Mlh3 complexes, but not Pms1, is recruited by Msh2-Msh6 through interactions with both of its subunits.


Subject(s)
DNA Mismatch Repair , Saccharomyces cerevisiae Proteins , Adenosine Triphosphatases/metabolism , DNA/metabolism , DNA-Binding Proteins , Endonucleases/metabolism , Humans , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , MutL Proteins/metabolism , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
5.
Front Cell Dev Biol ; 10: 843121, 2022.
Article in English | MEDLINE | ID: mdl-35784486

ABSTRACT

DNA mismatch repair (MMR) repairs replication errors, and MMR defects play a role in both inherited cancer predisposition syndromes and in sporadic cancers. MMR also recognizes mispairs caused by environmental and chemotherapeutic agents; however, in these cases mispair recognition leads to apoptosis and not repair. Although mutation avoidance by MMR is fairly well understood, MMR-associated proteins are still being identified. We performed a bioinformatic analysis that implicated Saccharomyces cerevisiae Rad5 as a candidate for interacting with the MMR proteins Msh2 and Mlh1. Rad5 is a DNA helicase and E3 ubiquitin ligase involved in post-replicative repair and damage tolerance. We confirmed both interactions and found that the Mlh1 interaction is mediated by a conserved Mlh1-interacting motif (MIP box). Despite this, we did not find a clear role for Rad5 in the canonical MMR mutation avoidance pathway. The interaction of Rad5 with Msh2 and Mlh1 is conserved in humans, although each of the Rad5 human homologs, HLTF and SHPRH, shared only one of the interactions: HLTF interacts with MSH2, and SHPRH interacts with MLH1. Moreover, depletion of SHPRH, but not HLTF, results in a mild increase in resistance to alkylating agents although not as strong as loss of MMR, suggesting gene duplication led to specialization of the MMR-protein associated roles of the human Rad5 homologs. These results provide insights into how MMR accessory factors involved in the MMR-dependent apoptotic response interact with the core MMR machinery and have important health implications into how human cells respond to environmental toxins, tumor development, and treatment choices of tumors with defects in Rad5 homologs.

6.
Nat Commun ; 12(1): 5568, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34552065

ABSTRACT

Eukaryotic DNA Mismatch Repair (MMR) involves redundant exonuclease 1 (Exo1)-dependent and Exo1-independent pathways, of which the Exo1-independent pathway(s) is not well understood. The exo1Δ440-702 mutation, which deletes the MutS Homolog 2 (Msh2) and MutL Homolog 1 (Mlh1) interacting peptides (SHIP and MIP boxes, respectively), eliminates the Exo1 MMR functions but is not lethal in combination with rad27Δ mutations. Analyzing the effect of different combinations of the exo1Δ440-702 mutation, a rad27Δ mutation and the pms1-A99V mutation, which inactivates an Exo1-independent MMR pathway, demonstrated that each of these mutations inactivates a different MMR pathway. Furthermore, it was possible to reconstitute a Rad27- and Msh2-Msh6-dependent MMR reaction in vitro using a mispaired DNA substrate and other MMR proteins. Our results demonstrate Rad27 defines an Exo1-independent eukaryotic MMR pathway that is redundant with at least two other MMR pathways.


Subject(s)
DNA Mismatch Repair , Exodeoxyribonucleases/metabolism , Flap Endonucleases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , DNA Ligases/metabolism , DNA, Fungal/metabolism , Exodeoxyribonucleases/genetics , Flap Endonucleases/genetics , MutL Proteins/genetics , MutL Proteins/metabolism , Mutation , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
7.
Curr Biol ; 31(6): 1268-1276.e6, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33417883

ABSTRACT

Mismatch repair (MMR) safeguards genome stability through recognition and excision of DNA replication errors.1-4 How eukaryotic MMR targets the newly replicated strand in vivo has not been established. MMR reactions reconstituted in vitro are directed to the strand containing a preexisting nick or gap,5-8 suggesting that strand discontinuities could act as discrimination signals. Another candidate is the proliferating cell nuclear antigen (PCNA) that is loaded at replication forks and is required for the activation of Mlh1-Pms1 endonuclease.7-9 Here, we discovered that overexpression of DNA ligase I (Cdc9) in Saccharomyces cerevisiae causes elevated mutation rates and increased chromatin-bound PCNA levels and accumulation of Pms1 foci that are MMR intermediates, suggesting that premature ligation of replication-associated nicks interferes with MMR. We showed that yeast Pms1 expression is mainly restricted to S phase, in agreement with the temporal coupling between MMR and DNA replication.10 Restricting Pms1 expression to the G2/M phase caused a mutator phenotype that was exacerbated in the absence of the exonuclease Exo1. This mutator phenotype was largely suppressed by increasing the lifetime of replication-associated DNA nicks, either by reducing or delaying Cdc9 ligase activity in vivo. Therefore, Cdc9 dictates a window of time for MMR determined by transient DNA nicks that direct the Mlh1-Pms1 in a strand-specific manner. Because DNA nicks occur on both newly synthesized leading and lagging strands,11 these results establish a general mechanism for targeting MMR to the newly synthesized DNA, thus preventing the accumulation of mutations that underlie the development of human cancer.


Subject(s)
DNA Mismatch Repair , DNA Replication , Saccharomyces cerevisiae Proteins , DNA Ligase ATP , DNA Repair , MutL Protein Homolog 1 , MutL Proteins , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 117(32): 19415-19424, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32719125

ABSTRACT

Synthetic lethality strategies for cancer therapy exploit cancer-specific genetic defects to identify targets that are uniquely essential to the survival of tumor cells. Here we show RAD27/FEN1, which encodes flap endonuclease 1 (FEN1), a structure-specific nuclease with roles in DNA replication and repair, and has the greatest number of synthetic lethal interactions with Saccharomyces cerevisiae genome instability genes, is a druggable target for an inhibitor-based approach to kill cancers with defects in homologous recombination (HR). The vulnerability of cancers with HR defects to FEN1 loss was validated by studies showing that small-molecule FEN1 inhibitors and FEN1 small interfering RNAs (siRNAs) selectively killed BRCA1- and BRCA2-defective human cell lines. Furthermore, the differential sensitivity to FEN1 inhibition was recapitulated in mice, where a small-molecule FEN1 inhibitor reduced the growth of tumors established from drug-sensitive but not drug-resistant cancer cell lines. FEN1 inhibition induced a DNA damage response in both sensitive and resistant cell lines; however, sensitive cell lines were unable to recover and replicate DNA even when the inhibitor was removed. Although FEN1 inhibition activated caspase to higher levels in sensitive cells, this apoptotic response occurred in p53-defective cells and cell killing was not blocked by a pan-caspase inhibitor. These results suggest that FEN1 inhibitors have the potential for therapeutically targeting HR-defective cancers such as those resulting from BRCA1 and BRCA2 mutations, and other genetic defects.


Subject(s)
Antineoplastic Agents/pharmacology , Flap Endonucleases/antagonists & inhibitors , Homologous Recombination/drug effects , Neoplasms/genetics , Animals , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , BRCA2 Protein/deficiency , BRCA2 Protein/genetics , Cell Line, Tumor , DNA Damage/drug effects , DNA Repair/drug effects , DNA Replication/drug effects , Flap Endonucleases/genetics , Genomic Instability/genetics , Humans , Mice , Neoplasms/drug therapy , RNA, Small Interfering/pharmacology , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Small Molecule Libraries/pharmacology , Synthetic Lethal Mutations , Xenograft Model Antitumor Assays
9.
Nat Rev Cancer ; 20(9): 533-549, 2020 09.
Article in English | MEDLINE | ID: mdl-32472073

ABSTRACT

Cell division and organismal development are exquisitely orchestrated and regulated processes. The dysregulation of the molecular mechanisms underlying these processes may cause cancer, a consequence of cell-intrinsic and/or cell-extrinsic events. Cellular DNA can be damaged by spontaneous hydrolysis, reactive oxygen species, aberrant cellular metabolism or other perturbations that cause DNA damage. Moreover, several environmental factors may damage the DNA, alter cellular metabolism or affect the ability of cells to interact with their microenvironment. While some environmental factors are well established as carcinogens, there remains a large knowledge gap of others owing to the difficulty in identifying them because of the typically long interval between carcinogen exposure and cancer diagnosis. DNA damage increases in cells harbouring mutations that impair their ability to correctly repair the DNA. Tumour predisposition syndromes in which cancers arise at an accelerated rate and in different organs - the equivalent of a sensitized background - provide a unique opportunity to examine how gene-environment interactions influence cancer risk when the initiating genetic defect responsible for malignancy is known. Understanding the molecular processes that are altered by specific germline mutations, environmental exposures and related mechanisms that promote cancer will allow the design of novel and effective preventive and therapeutic strategies.


Subject(s)
Gene-Environment Interaction , Genetic Predisposition to Disease , Neoplasms/genetics , Animals , Germ-Line Mutation , Humans
11.
Nat Struct Mol Biol ; 26(12): 1184, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31686054

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Proc Natl Acad Sci U S A ; 116(35): 17377-17382, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31409704

ABSTRACT

Gross Chromosomal Rearrangements (GCRs) play an important role in human diseases, including cancer. Although most of the nonessential Genome Instability Suppressing (GIS) genes in Saccharomyces cerevisiae are known, the essential genes in which mutations can cause increased GCR rates are not well understood. Here 2 S. cerevisiae GCR assays were used to screen a targeted collection of temperature-sensitive mutants to identify mutations that caused increased GCR rates. This identified 94 essential GIS (eGIS) genes in which mutations cause increased GCR rates and 38 candidate eGIS genes that encode eGIS1 protein-interacting or family member proteins. Analysis of TCGA data using the human genes predicted to encode the proteins and protein complexes implicated by the S. cerevisiae eGIS genes revealed a significant enrichment of mutations affecting predicted human eGIS genes in 10 of the 16 cancers analyzed.


Subject(s)
Genes, Suppressor , Genome, Fungal , Genomic Instability , Neoplasms/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Tumor Suppressor Proteins/genetics , DNA Damage , Humans , Mutation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Tumor Suppressor Proteins/metabolism
13.
Nat Commun ; 10(1): 3238, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324763

ABSTRACT

Leucine-rich repeat (LRR) domains are evolutionarily conserved in proteins that function in development and immunity. Here we report strict exonic modularity of LRR domains of several human gene families, which is a precondition for alternative splicing (AS). We provide evidence for AS of LRR domain within several Nod-like receptors, most prominently the inflammasome sensor NLRP3. Human NLRP3, but not mouse NLRP3, is expressed as two major isoforms, the full-length variant and a variant lacking exon 5. Moreover, NLRP3 AS is stochastically regulated, with NLRP3 ∆ exon 5 lacking the interaction surface for NEK7 and hence loss of activity. Our data thus reveals unexpected regulatory roles of AS through differential utilization of LRRs modules in vertebrate innate immunity.


Subject(s)
Alternative Splicing , Exons/genetics , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Amino Acid Sequence , Animals , Cells, Cultured , HEK293 Cells , Humans , Immunity, Innate/genetics , Inflammasomes/chemistry , Inflammasomes/metabolism , Macrophages/metabolism , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Stochastic Processes , Swine
15.
Cancer Cell ; 35(3): 504-518.e7, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30827889

ABSTRACT

Ionizing radiation (IR) and chemotherapy are standard-of-care treatments for glioblastoma (GBM) patients and both result in DNA damage, however, the clinical efficacy is limited due to therapeutic resistance. We identified a mechanism of such resistance mediated by phosphorylation of PTEN on tyrosine 240 (pY240-PTEN) by FGFR2. pY240-PTEN is rapidly elevated and bound to chromatin through interaction with Ki-67 in response to IR treatment and facilitates the recruitment of RAD51 to promote DNA repair. Blocking Y240 phosphorylation confers radiation sensitivity to tumors and extends survival in GBM preclinical models. Y240F-Pten knockin mice showed radiation sensitivity. These results suggest that FGFR-mediated pY240-PTEN is a key mechanism of radiation resistance and is an actionable target for improving radiotherapy efficacy.


Subject(s)
Brain Neoplasms/therapy , Cell Nucleus/metabolism , Glioma/therapy , PTEN Phosphohydrolase/metabolism , Pyrimidines/administration & dosage , Radiation Tolerance/drug effects , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Animals , Brain Neoplasms/metabolism , DNA Repair/drug effects , Female , Glioma/metabolism , Humans , Male , Mice , Phosphorylation/drug effects , Pyrimidines/pharmacology , Rad51 Recombinase/metabolism , Tyrosine/metabolism , Xenograft Model Antitumor Assays
16.
Microb Cell ; 6(1): 1-64, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30652105

ABSTRACT

Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

17.
Nat Commun ; 9(1): 3680, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30206225

ABSTRACT

Genome instability is associated with tumorigenesis. Here, we identify a role for the histone Htz1, which is deposited by the Swr1 chromatin-remodeling complex (SWR-C), in preventing genome instability in the absence of the replication fork/replication checkpoint proteins Mrc1, Csm3, or Tof1. When combined with deletion of SWR1 or HTZ1, deletion of MRC1, CSM3, or TOF1 or a replication-defective mrc1 mutation causes synergistic increases in gross chromosomal rearrangement (GCR) rates, accumulation of a broad spectrum of GCRs, and hypersensitivity to replication stress. The double mutants have severe replication defects and accumulate aberrant replication intermediates. None of the individual mutations cause large increases in GCR rates; however, defects in MRC1, CSM3 or TOF1 cause activation of the DNA damage checkpoint and replication defects. We propose a model in which Htz1 deposition and retention in chromatin prevents transiently stalled replication forks that occur in mrc1, tof1, or csm3 mutants from being converted to DNA double-strand breaks that trigger genome instability.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromatin Assembly and Disassembly , DNA Replication , Genomic Instability , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Cell Cycle , Chromatin/metabolism , Chromatin Assembly and Disassembly/drug effects , Chromosomes, Fungal/genetics , DNA Damage , DNA Replication/drug effects , Gene Rearrangement/genetics , Homologous Recombination/genetics , Hydroxyurea/pharmacology , Models, Biological , Mutation/genetics , Saccharomyces cerevisiae/metabolism , Stress, Physiological/drug effects
18.
J Biol Chem ; 293(47): 18055-18070, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30237169

ABSTRACT

DNA mismatch repair (MMR) corrects mispaired DNA bases and small insertion/deletion loops generated by DNA replication errors. After binding a mispair, the eukaryotic mispair recognition complex Msh2-Msh6 binds ATP in both of its nucleotide-binding sites, which induces a conformational change resulting in the formation of an Msh2-Msh6 sliding clamp that releases from the mispair and slides freely along the DNA. However, the roles that Msh2-Msh6 sliding clamps play in MMR remain poorly understood. Here, using Saccharomyces cerevisiae, we created Msh2 and Msh6 Walker A nucleotide-binding site mutants that have defects in ATP binding in one or both nucleotide-binding sites of the Msh2-Msh6 heterodimer. We found that these mutations cause a complete MMR defect in vivo The mutant Msh2-Msh6 complexes exhibited normal mispair recognition and were proficient at recruiting the MMR endonuclease Mlh1-Pms1 to mispaired DNA. At physiological (2.5 mm) ATP concentration, the mutant complexes displayed modest partial defects in supporting MMR in reconstituted Mlh1-Pms1-independent and Mlh1-Pms1-dependent MMR reactions in vitro and in activation of the Mlh1-Pms1 endonuclease and showed a more severe defect at low (0.1 mm) ATP concentration. In contrast, five of the mutants were completely defective and one was mostly defective for sliding clamp formation at high and low ATP concentrations. These findings suggest that mispair-dependent sliding clamp formation triggers binding of additional Msh2-Msh6 complexes and that further recruitment of additional downstream MMR proteins is required for signal amplification of mispair binding during MMR.


Subject(s)
Adenosine Triphosphate/metabolism , DNA Mismatch Repair , DNA-Binding Proteins/metabolism , MutS Homolog 2 Protein/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , MutS Homolog 2 Protein/chemistry , MutS Homolog 2 Protein/genetics , Protein Binding , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
19.
Nat Struct Mol Biol ; 25(8): 650-659, 2018 08.
Article in English | MEDLINE | ID: mdl-30061603

ABSTRACT

Eukaryotic DNA mismatch repair (MMR) involves both exonuclease 1 (Exo1)-dependent and Exo1-independent pathways. We found that the unstructured C-terminal domain of Saccharomyces cerevisiae Exo1 contains two MutS homolog 2 (Msh2)-interacting peptide (SHIP) boxes downstream from the MutL homolog 1 (Mlh1)-interacting peptide (MIP) box. These three sites were redundant in Exo1-dependent MMR in vivo and could be replaced by a fusion protein between an N-terminal fragment of Exo1 and Msh6. The SHIP-Msh2 interactions were eliminated by the msh2M470I mutation, and wild-type but not mutant SHIP peptides eliminated Exo1-dependent MMR in vitro. We identified two S. cerevisiae SHIP-box-containing proteins and three candidate human SHIP-box-containing proteins. One of these, Fun30, had a small role in Exo1-dependent MMR in vivo. The Remodeling of the Structure of Chromatin (Rsc) complex also functioned in both Exo1-dependent and Exo1-independent MMR in vivo. Our results identified two modes of Exo1 recruitment and a peptide module that mediates interactions between Msh2 and other proteins, and they support a model in which Exo1 functions in MMR by being tethered to the Msh2-Msh6 complex.


Subject(s)
DNA Mismatch Repair , DNA Repair Enzymes/metabolism , Exodeoxyribonucleases/metabolism , MutS Homolog 2 Protein/metabolism , Protein Interaction Domains and Motifs , Amino Acid Sequence , Conserved Sequence , Humans , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid
20.
PLoS Genet ; 14(3): e1007250, 2018 03.
Article in English | MEDLINE | ID: mdl-29505562

ABSTRACT

Mms21, a subunit of the Smc5/6 complex, possesses an E3 ligase activity for the Small Ubiquitin-like MOdifier (SUMO). Here we show that the mms21-CH mutation, which inactivates Mms21 ligase activity, causes increased accumulation of gross chromosomal rearrangements (GCRs) selected in the dGCR assay. These dGCRs are formed by non-allelic homologous recombination between divergent DNA sequences mediated by Rad52-, Rrm3- and Pol32-dependent break-induced replication. Combining mms21-CH with sgs1Δ caused a synergistic increase in GCRs rates, indicating the distinct roles of Mms21 and Sgs1 in suppressing GCRs. The mms21-CH mutation also caused increased rates of accumulating uGCRs mediated by breakpoints in unique sequences as revealed by whole genome sequencing. Consistent with the accumulation of endogenous DNA lesions, mms21-CH mutants accumulate increased levels of spontaneous Rad52 and Ddc2 foci and had a hyper-activated DNA damage checkpoint. Together, these findings support that Mms21 prevents the accumulation of spontaneous DNA lesions that cause diverse GCRs.


Subject(s)
DNA Damage/genetics , SUMO-1 Protein/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Chromosomes, Fungal , DNA Repair , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Epistasis, Genetic , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Genome, Fungal , Mutation , Rad52 DNA Repair and Recombination Protein/metabolism , RecQ Helicases/genetics , RecQ Helicases/metabolism , SUMO-1 Protein/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...