Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 12(9)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32858903

ABSTRACT

The aim of the study was to verify the hypothesis about differences in sweet taste perception in the group of preschool children with and without caries, and to determine its relationship with cariogenic microbiota and the frequency of sweets consumption in children. The study group included of 63 children aged 2-6 years: 32 with caries and 31 without caries. The study consisted of collecting questionnaire data and assessment of dental status using the decayed, missing, filled in primary teeth index (dmft) and the International Caries Detection and Assessment System (ICDAS II). The evaluation of sweet taste perception was carried out using a specific method that simultaneously assessed the level of taste preferences and the sensitivity threshold for a given taste. The microbiological analysis consisted of the assessment of the quantitative and qualitative compositions of the oral microbiota of the examined children. The sweet taste perception of children with caries was characterized by a lower susceptibility to sucrose (the preferred sucrose solution concentration was >4 g/L) compared to children without caries (in the range ≤ 4 g/L, p = 0.0015, chi-square test). A similar relationship was also observed for frequent snacking between meals (p = 0.0038, chi-square test). The analysis of studied variables showed the existence of a strong positive correlation between the perception of sweet taste and the occurrence and intensity of the cariogenic process (p = 0.007 for dmft; and p = 0.012 for ICDAS II), as well as the frequency of consuming sweets (p ≤ 0.001 for frequent and repeated consumption of sweets during the day, Spearman test) in children with caries. Additionally, children with an elevated sucrose taste threshold were more than 10-times more likely to develop S. mutans presence (OR = 10.21; 95% CI 3.11-33.44). The results of this study suggest the future use of taste preferences in children as a diagnostic tool for the early detection of increased susceptibility to caries through microbial dysbiosis towards specific species of microorganisms.


Subject(s)
Dental Caries/psychology , Dietary Sucrose/administration & dosage , Food Preferences/psychology , Streptococcus mutans , Taste Perception/physiology , Taste Threshold/physiology , Child , Child, Preschool , Dental Caries/microbiology , Female , Humans , Male
2.
Article in English | MEDLINE | ID: mdl-32466155

ABSTRACT

Secondary caries is a disease associated with the formation of biofilm on the border of the tooth and dental filling. Its development is strongly influenced by the dietary sweet foods and the type of dental material. The aim of the study was to assess the effect of sweeteners on the ability of clinical Streptococcus mutans strains to form biofilm on dental materials. Strains were isolated from plaque samples from 40 pediatric patients from the 3-6 ICADS II group. The ability to form biofilm was tested on composite and glass ionomer dental materials used for milk teeth filling in the presence of sucrose, xylitol, sorbitol, and erythritol. The bacterial film mass after 12, 24, 48, and 72 h and the number of bacterial colonies significantly decreased (p < 0.01) compared to the initial value for 5% erythritol and sorbitol on examined materials. A greater inhibitory effect was noted for glass ionomers compared to composites. Sucrose and xylitol supported biofilm formation, while erythritol had the best inhibitory effect. The use of fluoride-releasing glass ionomers exerted an effect synergistic to erythritol, i.e., inhibited plaque formation and the amount of cariogenic S. mutans. Selection of proper type of dental material together with replacing sucrose with polyols can significantly decrease risk of secondary caries development. Erithritol in combination with glass ionomer seems to be the most effective in secondary caries prevention.


Subject(s)
Biofilms , Dental Caries , Polymers , Streptococcus mutans , Sweetening Agents , Child , Dental Materials , Diet , Humans
3.
Nutrients ; 9(11)2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29135948

ABSTRACT

The aim of the study was to evaluate the anti-cariogenic effects of Lactobacillus salivarius by reducing pathogenic species and biofilm mass in a double-species biofilm model. Coexistence of S. mutans with C. albicans can cause dental caries progression or recurrence of the disease in the future. Fifty-nine children with diagnosed early childhood caries (ECC) were recruited onto the study. The condition of the children's dentition was defined according to the World Health Organization guidelines. The participants were divided into children with initial enamel demineralization and children showing dentin damage. The study was performed on the S. mutans and C. albicans clinical strains, isolated from dental plaque of patients with ECC. The effect of a probiotic containing Lactobacillus salivarius on the ability of S. mutans and C. albicans to produce a double-species biofilm was investigated in an in vitro model. The biomass of the formed/non-degraded biofilm was analyzed on the basis of its crystal violet staining. The number of colonies of S. mutans and C. albicans (CFU/mL, colony forming units/mL) forming the biofilm was determined. Microorganism morphology in the biofilm was evaluated using a scanning electron microscope (SEM). In vitro analysis demonstrated that the presence of S. mutans increased the number of C. albicans colonies (CFU/mL); the double-species biofilm mass and hyphal forms produced in it by the yeast. L. salivarius inhibited the cariogenic biofilm formation of C. albicans and S. mutans. Under the influence of the probiotic; the biofilm mass and the number of S. mutans; C. albicans and S. mutans with C. albicans colonies in the biofilm was decreased. Moreover; it can be noted that after the addition of the probiotic; fungi did not form hyphae or germ tubes of pathogenic potential. These results suggest that L. salivarius can secrete intermediates capable of inhibiting the formation of cariogenic S. mutans and C. albicans biofilm; and may inhibit fungal morphological transformation and thereby reduce the pathogenicity of C. albicans; weakening its pathogenic potential. Further research is required to prove or disprove the long-term effects of the preparation and to achieve preventive methods.


Subject(s)
Candida albicans , Ligilactobacillus salivarius/physiology , Streptococcus mutans , Biofilms , Child, Preschool , Dental Caries/prevention & control , Dental Plaque , Female , Humans , Male , Probiotics/therapeutic use
4.
Postepy Hig Med Dosw (Online) ; 69: 1056-66, 2015 Sep 20.
Article in English | MEDLINE | ID: mdl-26400891

ABSTRACT

INTRODUCTION: The mechanisms of adhesion to solid surfaces enable S. mutans to colonize oral cavities and form biofilms, which play an important role in caries development. Additional properties enabling the survival of S. mutans in the oral cavity include its ability to survive in acidic environments and specific interactions with other microorganisms inhabiting this ecosystem. AIM OF THE STUDY: The aim of this study was to determine the antibacterial activity of saliva histatin-5 (peptide) and lysozyme (protein) against S. mutans and L. rhamnosus, as representatives of physiological flora. MATERIALS AND METHODS: The study involved strains of physiological (L. rhamnosus) and cariogenic (S. mutans) flora isolated from one patient with diagnosed early caries of the deciduous teeth. RESULTS: It was proved that the presence of probiotic L. rhamnosus bacteria in the environment had a negative impact on the ability of S. mutans to produce biofilm. Moreover, the antibacterial activity of histatin-5 was confirmed, and it inhibited S. mutans growth at concentrations of 27.2 µg/ml and 54.4 µg/ml, both individually and in a mixture with lysozyme (in a total concentration of 54.4 µg/ml). CONCLUSIONS: The data obtained constitute a promising result due to their potential future application in the prevention and early diagnosis of caries.


Subject(s)
Biofilms/drug effects , Biofilms/growth & development , Histatins/pharmacology , Lacticaseibacillus rhamnosus/growth & development , Muramidase/pharmacology , Streptococcus mutans/growth & development , Cell Adhesion/drug effects , Dental Caries/microbiology , Humans , Lacticaseibacillus rhamnosus/drug effects , Mouth/microbiology , Saliva/microbiology , Streptococcus mutans/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...