Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998207

ABSTRACT

The cross-section of various substrate-deposit metal pairs obtained with a laser-assisted additive manufacturing process has been studied by observing the composition profile with energy-dispersive spectroscopy (EDS). The EDS composition profiles observed with a sufficiently high data acquisition time revealed that the composition profile is asymmetric. By scanning toward the growth direction, a sudden composition variation was observed, which was followed by a slow decay. The character of the composition profile was the same for a number of substrate-deposit pairs, and similar trends were found in various earlier publications as well. A mathematical model for the composition variation is suggested based on the assumption that a spontaneous homogenization process takes place in the intermixing (dilution) zone of the remelted top layer of the substrate. The equation obtained makes it possible to quantitatively describe the composition profile of each component that exhibits a concentration difference between the substrate and the deposit, provided that the mole fraction difference much exceeds the scattering of the data measured. The suggested model has also been applied successfully to composition profiles published in other works, hence exhibiting general relevance. Since the variation in some physical parameters (such as hardness) along the growth direction has been reported to follow the same pattern, it is assumed that the root cause in these cases may also be the composition variation.

2.
ACS Appl Nano Mater ; 7(9): 9968-9977, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38752020

ABSTRACT

Different Co contents were used to tune bimetallic Pt-Co nanoparticles with a diameter of 8 nm, resulting in Pt:Co ratios of 3.54, 1.51, and 0.96. These nanoparticles were then applied to the MCF-17 mesoporous silica support. The synthesized materials were characterized with HR-TEM, HAADF-TEM, EDX, XRD, BET, ICP-MS, in situ DRIFTS, and quasi in situ XPS techniques. The catalysts were tested in a thermally induced reverse water-gas shift reaction (CO2:H2 = 1:4) at atmospheric pressure in the 200-700 °C temperature range. All bimetallic Pt-Co particles outperformed the pure Pt benchmark catalyst. The nanoparticles with a Pt:Co ratio of 1.51 exhibited 2.6 times higher activity and increased CO selectivity by 4% at 500 °C. Experiments proved that the electron accumulation and alloying effect on the Pt-Co particles are stronger with higher Co ratios. The production of CO followed the formate reaction pathway on all catalysts due to the face-centered-cubic structure, which is similar to the Pt benchmark. It is concluded that the enhanced properties of Co culminate at a Pt:Co ratio of 1.51 because decreasing the ratio to 0.96 results in lower activity despite having more Co atoms available for the electronic interaction, resulting in the lack of electron-rich Pt sites.

3.
Materials (Basel) ; 15(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36143625

ABSTRACT

In a single process run, an amorphous silicon oxynitride layer was grown, which includes the entire transition from oxide to nitride. The variation of the optical properties and the thickness of the layer was characterized by Spectroscopic Ellipsometry (SE) measurements, while the elemental composition was investigated by Energy Dispersive Spectroscopy (EDS). It was revealed that the refractive index of the layer at 632.8 nm is tunable in the 1.48-1.89 range by varying the oxygen partial pressure in the chamber. From the data of the composition of the layer, the typical physical parameters of the process were determined by applying the Berg model valid for reactive sputtering. In our modelling, a new approach was introduced, where the metallic Si target sputtered with a uniform nitrogen and variable oxygen gas flow was considered as an oxygen gas-sputtered SiN target. The layer growth method used in the present work and the revealed correlations between sputtering parameters, layer composition and refractive index, enable both the achievement of the desired optical properties of silicon oxynitride layers and the production of thin films with gradient refractive index for technology applications.

4.
Nanomaterials (Basel) ; 10(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33203017

ABSTRACT

Experiments were conducted for the study of the effect of cysteine addition on the microstructure of nanocrystalline Ni films electrodeposited from a nickel sulfate-based bath. Furthermore, the thermal stability of the nanostructure of Ni layers processed with cysteine addition was also investigated. It was found that with increasing cysteine content in the bath, the grain size decreased, while the dislocation density and the twin fault probability increased. Simultaneously, the hardness increased due to cysteine addition through various effects. Saturation in the microstructure and hardness was achieved at cysteine contents of 0.3-0.4 g/L. Moreover, the texture changed from (220) to (200) with increasing the concentration of cysteine. The hardness of the Ni films processed with the addition of 0.4 g/L cysteine (∼6800 MPa) was higher than the values obtained for other additives in the literature (<6000 MPa). This hardness was further enhanced to ∼8400 MPa when the Ni film was heated up to 500 K. It was revealed that the hardness remained as high as 6000 MPa even after heating up to 750 K, while for other additives, the hardness decreased below 3000 MPa at the same temperature.

5.
J Colloid Interface Sci ; 549: 150-161, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31029843

ABSTRACT

Carbon quantum dots (CQDs) are a novel family of fluorescent materials that could be employed as non-toxic alternatives to molecular fluorescent dyes in biological research and also in medicine. Four different preparation approaches, including microwave assisted heating and solvent refluxing, were explored. In addition to the widely used microwave assisted methods, a simple convenient new procedure is presented here for the particle synthesis. A detailed X-ray photoelectron spectroscopic (XPS) analysis was employed to characterize the composition, and more importantly, the chemical structure of the CQD samples and the interrelation of the characteristic surface chemical groups with the fluorescence properties and with surface polarity was unambiguously established. In vitro cellular internalization experiments documented their applicability as fluorescence labels while non-toxic properties were also approved. It was demonstrated that the adequate water-dispersibility of the particles plays a crucial role in their biological application. The synthetized CQD samples turned to be promising for cellular imaging applications both in laser illuminated flow cytometric measurements and in fluorescence microscopy.


Subject(s)
Carbon/chemistry , Fluorescent Dyes/chemistry , Microwaves , Quantum Dots/chemistry , Solvents/chemistry , Cell Line , Fluorescent Dyes/toxicity , Humans , Particle Size , Quantum Dots/toxicity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...