Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 32(18): 5013-5027, 2023 09.
Article in English | MEDLINE | ID: mdl-37548650

ABSTRACT

Nature has evolved a wealth of sex determination (SD) mechanisms, driven by both genetic and environmental factors. Recent studies of SD in fishes have shown that not all taxa fit the classic paradigm of sex chromosome evolution and diverse SD methods can be found even among closely related species. Here, we apply a suite of genomic approaches to investigate sex-biased genomic variation in eight species of Sebastes rockfish found in the northeast Pacific Ocean. Using recently assembled chromosome-level rockfish genomes, we leverage published sequence data to identify disparate sex chromosomes and sex-biased loci in five species. We identify two putative male sex chromosomes in S. diaconus, a single putative sex chromosome in the sibling species S. carnatus and S. chrysomelas, and an unplaced sex determining contig in the sibling species S. miniatus and S. crocotulus. Our study provides evidence for disparate means of sex determination within a recently diverged set of species and sheds light on the diverse origins of sex determination mechanisms present in the animal kingdom.


Subject(s)
Bass , Perciformes , Animals , Male , Perciformes/genetics , Sex Chromosomes/genetics , Y Chromosome , Genomics/methods , Bass/genetics , Evolution, Molecular
2.
F1000Res ; 11: 530, 2022.
Article in English | MEDLINE | ID: mdl-36262335

ABSTRACT

In October 2021, 59 scientists from 14 countries and 13 U.S. states collaborated virtually in the Third Annual Baylor College of Medicine & DNANexus Structural Variation hackathon. The goal of the hackathon was to advance research on structural variants (SVs) by prototyping and iterating on open-source software. This led to nine hackathon projects focused on diverse genomics research interests, including various SV discovery and genotyping methods, SV sequence reconstruction, and clinically relevant structural variation, including SARS-CoV-2 variants. Repositories for the projects that participated in the hackathon are available at https://github.com/collaborativebioinformatics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Genomics , Software
3.
Invest Ophthalmol Vis Sci ; 63(9): 25, 2022 08 02.
Article in English | MEDLINE | ID: mdl-36006019

ABSTRACT

Purpose: To identify key retinal pigment epithelium (RPE) genes linked to the induction of myopia in guinea pigs. Methods: To induce myopia, two-week-old pigmented guinea pigs (New Zealand strain, n = 5) wore -10 diopter (D) rigid gas-permeable contact lenses (CLs), for one day; fellow eyes were left without CLs and served as controls. Spherical equivalent refractive errors (SE) and axial length (AL) were measured at baseline and one day after initiation of CL wear. RNA sequencing was applied to RPE collected from both treated and fellow (control) eyes after one day of CL-wear to identify related gene expression changes. Additional RPE-RNA samples from treated and fellow eyes were subjected to quantitative real-time PCR (qRT-PCR) analysis for validation purposes. Results: The CLs induced myopia. The change from baseline values in SE was significantly different (P = 0.016), whereas there was no significant difference in the change in AL (P = 0.10). RNA sequencing revealed significant interocular differences in the expression in RPE of 13 genes: eight genes were significantly upregulated in treated eyes relative to their fellows, and five genes, including bone morphogenetic protein 2 (Bmp2), were significantly downregulated. The latter result was also confirmed by qRT-PCR. Additional analysis of differentially expressed genes revealed significant enrichment for bone morphogenetic protein (BMP) and TGF-ß signaling pathways. Conclusions: The results of this RPE gene expression study provide further supporting evidence for an important role of BMP2 in eye growth regulation, here from a guinea pig myopia model.


Subject(s)
Contact Lenses , Myopia , Animals , Contact Lenses/adverse effects , Disease Models, Animal , Guinea Pigs , Myopia/genetics , Myopia/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigments/metabolism , Transcriptome
4.
Science ; 374(6569): 842-847, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34762458

ABSTRACT

Pacific Ocean rockfishes (genus Sebastes) exhibit extreme variation in life span, with some species being among the most long-lived extant vertebrates. We de novo assembled the genomes of 88 rockfish species and from these identified repeated signatures of positive selection in DNA repair pathways in long-lived taxa and 137 longevity-associated genes with direct effects on life span through insulin signaling and with pleiotropic effects through size and environmental adaptations. A genome-wide screen of structural variation reveals copy number expansions in the immune modulatory butyrophilin gene family in long-lived species. The evolution of different rockfish life histories is coupled to genetic diversity and reshapes the mutational spectrum driving segregating CpG→TpG variants in long-lived species. These analyses highlight the genetic innovations that underlie life history trait adaptations and, in turn, how they shape genomic diversity.


Subject(s)
Biological Evolution , Genome , Longevity/genetics , Perciformes/genetics , Perciformes/physiology , Animals , Butyrophilins/genetics , DNA Repair/genetics , Gene Dosage , Genetic Pleiotropy , Genetic Speciation , Genetic Variation , High-Throughput Nucleotide Sequencing , Immunomodulation/genetics , Life History Traits , Mutation , Pacific Ocean , Phylogeny , Selection, Genetic , Whole Genome Sequencing
5.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R413-R428, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34260302

ABSTRACT

Elephant seals experience natural periods of prolonged food deprivation while breeding, molting, and undergoing postnatal development. Prolonged food deprivation in elephant seals increases circulating glucocorticoids without inducing muscle atrophy, but the cellular mechanisms that allow elephant seals to cope with such conditions remain elusive. We generated a cellular model and conducted transcriptomic, metabolic, and morphological analyses to study how seal cells adapt to sustained glucocorticoid exposure. Seal muscle progenitor cells differentiate into contractile myotubes with a distinctive morphology, gene expression profile, and metabolic phenotype. Exposure to dexamethasone at three ascending concentrations for 48 h modulated the expression of six clusters of genes related to structural constituents of muscle and pathways associated with energy metabolism and cell survival. Knockdown of the glucocorticoid receptor (GR) and downstream expression analyses corroborated that GR mediates the observed effects. Dexamethasone also decreased cellular respiration, shifted the metabolic phenotype toward glycolysis, and induced mitochondrial fission and dissociation of mitochondria-endoplasmic reticulum (ER) interactions without decreasing cell viability. Knockdown of DNA damage-inducible transcript 4 (DDIT4), a GR target involved in the dissociation of mitochondria-ER membranes, recovered respiration and modulated antioxidant gene expression in myotubes treated with dexamethasone. These results show that adaptation to sustained glucocorticoid exposure in elephant seal myotubes involves a metabolic shift toward glycolysis, which is supported by alterations in mitochondrial morphology and a reduction in mitochondria-ER interactions, resulting in decreased respiration without compromising cell survival.


Subject(s)
Energy Metabolism/physiology , Glucocorticoids/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Adaptation, Physiological , Animals , Antioxidants/metabolism , Fasting/metabolism , Food Deprivation/physiology , Phenotype , Receptors, Glucocorticoid/genetics , Seals, Earless/metabolism , Transcriptome/physiology
6.
Genome Biol Evol ; 13(8)2021 08 03.
Article in English | MEDLINE | ID: mdl-33988711

ABSTRACT

The European green lizards of the Lacerta viridis complex consist of two closely related species, L. viridis and Lacerta bilineata that split less than 7 million years ago in the presence of gene flow. Recently, a third lineage, referred to as the "Adriatic" was described within the L. viridis complex distributed from Slovenia to Greece. However, whether gene flow between the Adriatic lineage and L. viridis or L. bilineata has occurred and the evolutionary processes involved in their diversification are currently unknown. We hypothesized that divergence occurred in the presence of gene flow between multiple lineages and involved tissue-specific gene evolution. In this study, we sequenced the whole genome of an individual of the Adriatic lineage and tested for the presence of gene flow amongst L. viridis, L. bilineata, and Adriatic. Additionally, we sequenced transcriptomes from multiple tissues to understand tissue-specific effects. The species tree supports that the Adriatic lineage is a sister taxon to L. bilineata. We detected gene flow between the Adriatic lineage and L. viridis suggesting that the evolutionary history of the L. viridis complex is likely shaped by gene flow. Interestingly, we observed topological differences between the autosomal and Z-chromosome phylogenies with a few fast evolving genes on the Z-chromosome. Genes highly expressed in the ovaries and strongly co-expressed in the brain experienced accelerated evolution presumably contributing to establishing reproductive isolation in the L. viridis complex.


Subject(s)
Gene Flow , Lizards , Animals , Base Sequence , Genome , Lizards/genetics , Phylogeny
7.
Comput Struct Biotechnol J ; 18: 2945-2952, 2020.
Article in English | MEDLINE | ID: mdl-33209206

ABSTRACT

Genome-wide association studies (GWAS) have contributed significantly to predisposing the disease etiology by associating single nucleotide polymorphisms (SNPs) with complex diseases. However, most GWAS-SNPs are in the noncoding regions that may affect distal genes via long range enhancer-promoter interactions. Thus, the common practice on GWAS discoveries cannot fully reveal the molecular mechanisms underpinning complex diseases. It is known that perturbations of topological associated domains (TADs) lead to long range interactions which underlie disease etiology. To identify the probable long range interactions in noncoding regions via GWAS and TADs perturbed by deletions, we integrated datasets from GWAS-SNPs, enhancers, TADs, and deletions. After ranking and clustering, we prioritized 201,132 high confident pairs of GWAS-SNPs and target genes. In this study, we performed a systematic inference on noncoding regions via GWAS-SNPs and deletion-perturbed TADs to boost GWAS discovery power. The high confident pairs of GWAS-SNPs and target genes (SE-Gs) provide the promising candidates to understand the molecular mechanisms underlying complex diseases with emphasis on the three-dimensional genome.

8.
PLoS Comput Biol ; 16(6): e1007933, 2020 06.
Article in English | MEDLINE | ID: mdl-32559231

ABSTRACT

A high quality benchmark for small variants encompassing 88 to 90% of the reference genome has been developed for seven Genome in a Bottle (GIAB) reference samples. However a reliable benchmark for large indels and structural variants (SVs) is more challenging. In this study, we manually curated 1235 SVs, which can ultimately be used to evaluate SV callers or train machine learning models. We developed a crowdsourcing app-SVCurator-to help GIAB curators manually review large indels and SVs within the human genome, and report their genotype and size accuracy. SVCurator displays images from short, long, and linked read sequencing data from the GIAB Ashkenazi Jewish Trio son [NIST RM 8391/HG002]. We asked curators to assign labels describing SV type (deletion or insertion), size accuracy, and genotype for 1235 putative insertions and deletions sampled from different size bins between 20 and 892,149 bp. 'Expert' curators were 93% concordant with each other, and 37 of the 61 curators had at least 78% concordance with a set of 'expert' curators. The curators were least concordant for complex SVs and SVs that had inaccurate breakpoints or size predictions. After filtering events with low concordance among curators, we produced high confidence labels for 935 events. The SVCurator crowdsourced labels were 94.5% concordant with the heuristic-based draft benchmark SV callset from GIAB. We found that curators can successfully evaluate putative SVs when given evidence from multiple sequencing technologies.


Subject(s)
Genome, Human , Genomic Structural Variation , Heuristics , Humans , INDEL Mutation
9.
J Theor Biol ; 490: 110172, 2020 04 07.
Article in English | MEDLINE | ID: mdl-31972174

ABSTRACT

Neisseria gonorrhoeae is a gram negative diplococcus bacterium and the causative agent of the sexually transmitted disease Gonorrhea. It has been recently given the status of "superbug" by World Health Organization because of the increasing antibiotic resistance and unavailability of a viable vaccine candidate. Over recent years, there have been increasing reports about the use of subtractive genomics to identify potential drug and vaccine targets. Our study utilizes codon biasing, a tool to identify the essential genes, in N. gonorrhoeae that could be utilized as novel therapeutic targets for drug or vaccine development. Through the screening of 2350 total genes, we present a list of 29 such drug candidate genes based on codon adaptation. Through the data-mining with BLAST2GO and InterProScan databases, we could predict the function of these 29 genes. These genes are involved in pivotal cellular functions like DNA replication, energy synthesis and metabolites production. This study also shortlists the essential genes of N. gonorrhoeae that could be used to target Neisseria. We identified a molecule/drug which can be used to target essential protein DapD (succinyltransferase).


Subject(s)
Gonorrhea , Neisseria gonorrhoeae , Computer Simulation , Genomics , Gonorrhea/drug therapy , Humans , Neisseria gonorrhoeae/genetics
10.
Gigascience ; 8(2)2019 02 01.
Article in English | MEDLINE | ID: mdl-30535196

ABSTRACT

BACKGROUND: Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes. FINDINGS: Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated. CONCLUSION: The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids.


Subject(s)
Evolution, Molecular , Genome , Lizards/genetics , Animals , Female , Genomics , Male , Sequence Analysis, DNA , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...