Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chem Sci ; 14(9): 2289-2302, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36873853

ABSTRACT

Activated effector caspases 3, 6 and 7 are responsible for cleaving a number of target substrates, leading to the ultimate destruction of cells via apoptosis. The functions of caspases 3 and 7 in apoptosis execution have been widely studied over the years with multiple chemical probes for both of these enzymes. In contrast, caspase 6 seems to be largely neglected when compared to the heavily studied caspases 3 and 7. Therefore, the development of new small-molecule reagents for the selective detection and visualization of caspase 6 activity can improve our understanding of molecular circuits of apoptosis and shed new light on how they intertwine with other types of programmed cell death. In this study, we profiled caspase 6 substrate specificity at the P5 position and discovered that, similar to caspase 2, caspase 6 prefers pentapeptide substrates over tetrapeptides. Based on these data, we developed a set of chemical reagents for caspase 6 investigation, including coumarin-based fluorescent substrates, irreversible inhibitors and selective aggregation-induced emission luminogens (AIEgens). We showed that AIEgens are able to distinguish between caspase 3 and caspase 6 in vitro. Finally, we validated the efficiency and selectivity of the synthesized reagents by monitoring lamin A and PARP cleavage via mass cytometry and western blot analysis. We propose that our reagents may provide new research prospects for single-cell monitoring of caspase 6 activity to reveal its function in programmed cell death pathways.

2.
J Med Chem ; 66(6): 3785-3797, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36898159

ABSTRACT

Anticoagulation therapy is a mainstay of the treatment of thrombotic disorders; however, conventional anticoagulants trade antithrombotic benefits for bleeding risk. Factor (f) XI deficiency, known as hemophilia C, rarely causes spontaneous bleeding, suggesting that fXI plays a limited role in hemostasis. In contrast, individuals with congenital fXI deficiency display a reduced incidence of ischemic stroke and venous thromboembolism, indicating that fXI plays a role in thrombosis. For these reasons, there is intense interest in pursuing fXI/factor XIa (fXIa) as targets for achieving antithrombotic benefit with reduced bleeding risk. To obtain selective inhibitors of fXIa, we employed libraries of natural and unnatural amino acids to profile fXIa substrate preferences. We developed chemical tools for investigating fXIa activity, such as substrates, inhibitors, and activity-based probes (ABPs). Finally, we demonstrated that our ABP selectively labels fXIa in the human plasma, making this tool suitable for further studies on the role of fXIa in biological samples.


Subject(s)
Factor XIa , Thrombosis , Humans , Fibrinolytic Agents , Hemostasis , Anticoagulants/pharmacology , Factor XI/metabolism
3.
Cell Chem Biol ; 30(2): 159-174.e8, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36696904

ABSTRACT

Cathepsin K (CatK) is a lysosomal cysteine protease whose highest expression is found in osteoclasts, which are the cells responsible for bone resorption. Investigations of the functions and physiological relevance of CatK have often relied on antibody-related techniques, which makes studying its activity patterns a challenging task. Hence, we developed a set of chemical tools for the investigation of CatK activity. We show that our probe is a valuable tool for monitoring the proteolytic activation of CatK during osteoclast formation. Moreover, we demonstrate that our inhibitor of CatK impedes osteoclastogenesis and bone resorption and that CatK is stored in its active form in osteoclasts within their lysosomal compartment and mainly in the ruffled borders of osteoclasts. Given that our probe recognizes active CatK within living cells without exhibiting any observed cytotoxicity in the several models tested, we expect that it would be well suited to theranostic applications in CatK-related diseases.


Subject(s)
Bone Resorption , Osteoclasts , Humans , Osteoclasts/metabolism , Osteogenesis , Cathepsin K/metabolism , Bone Resorption/metabolism
4.
Chem Sci ; 13(23): 6813-6829, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35774156

ABSTRACT

Activated protein C (APC), thrombin, and factor (f) Xa are vitamin K-dependent serine proteases that are key factors in blood coagulation. Moreover, they play important roles in inflammation, apoptosis, fibrosis, angiogenesis, and viral infections. Abnormal activity of these coagulation factors has been related to multiple conditions, such as bleeding and thrombosis, Alzheimer's disease, sepsis, multiple sclerosis, and COVID-19. The individual activities of APC, thrombin, and fXa in coagulation and in various diseases are difficult to establish since these proteases are related and have similar substrate preferences. Therefore, the development of selective chemical tools that enable imaging and discrimination between coagulation factors in biological samples may provide better insight into their roles in various conditions and potentially aid in the establishment of novel diagnostic tests. In our study, we used a large collection of unnatural amino acids, and this enabled us to extensively explore the binding pockets of the enzymes' active sites. Based on the specificity profiles obtained, we designed highly selective substrates, inhibitors, and fluorescent activity-based probes (ABPs) that were used for fast, direct, and simultaneous detection of APC, thrombin, and fXa in human plasma.

5.
J Biol Chem ; 295(32): 11292-11302, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32554464

ABSTRACT

Pyroptosis is the caspase-dependent inflammatory cell death mechanism that underpins the innate immune response against pathogens and is dysregulated in inflammatory disorders. Pyroptosis occurs via two pathways: the canonical pathway, signaled by caspase-1, and the noncanonical pathway, regulated by mouse caspase-11 and human caspase-4/5. All inflammatory caspases activate the pyroptosis effector protein gasdermin D, but caspase-1 mostly activates the inflammatory cytokine precursors prointerleukin-18 and prointerleukin-1ß (pro-IL18/pro-IL1ß). Here, in vitro cleavage assays with recombinant proteins confirmed that caspase-11 prefers cleaving gasdermin D over the pro-ILs. However, we found that caspase-11 recognizes protein substrates through a mechanism that is different from that of most caspases. Results of kinetics analysis with synthetic fluorogenic peptides indicated that P1'-P4', the C-terminal gasdermin D region adjacent to the cleavage site, influences gasdermin D recognition by caspase-11. Furthermore, introducing the gasdermin D P1'-P4' region into pro-IL18 enhanced catalysis by caspase-11 to levels comparable with that of gasdermin D cleavage. Pro-IL1ß cleavage was only moderately enhanced by similar substitutions. We conclude that caspase-11 specificity is mediated by the P1'-P4' region in its substrate gasdermin D, and similar experiments confirmed that the substrate specificities of the human orthologs of caspase-11, i.e. caspase-4 and caspase-5, are ruled by the same mechanism. We propose that P1'-P4'-based inhibitors could be exploited to specifically target inflammatory caspases.


Subject(s)
Caspases/metabolism , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/physiology , Phosphate-Binding Proteins/physiology , Pyroptosis , Animals , Catalysis , Humans , Immunity, Innate , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Phosphate-Binding Proteins/chemistry , Phosphate-Binding Proteins/metabolism , Proteolysis , Substrate Specificity
6.
J Biol Chem ; 295(28): 9567-9582, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32439802

ABSTRACT

Natural killer (NK) cells are key innate immunity effectors that combat viral infections and control several cancer types. For their immune function, human NK cells rely largely on five different cytotoxic proteases, called granzymes (A/B/H/K/M). Granzyme B (GrB) initiates at least three distinct cell death pathways, but key aspects of its function remain unexplored because selective probes that detect its activity are currently lacking. In this study, we used a set of unnatural amino acids to fully map the substrate preferences of GrB, demonstrating previously unknown GrB substrate preferences. We then used these preferences to design substrate-based inhibitors and a GrB-activatable activity-based fluorogenic probe. We show that our GrB probes do not significantly react with caspases, making them ideal for in-depth analyses of GrB localization and function in cells. Using our quenched fluorescence substrate, we observed GrB within the cytotoxic granules of human YT cells. When used as cytotoxic effectors, YT cells loaded with GrB attacked MDA-MB-231 target cells, and active GrB influenced its target cell-killing efficiency. In summary, we have developed a set of molecular tools for investigating GrB function in NK cells and demonstrate noninvasive visual detection of GrB with an enzyme-activated fluorescent substrate.


Subject(s)
Fluorescent Dyes/chemistry , Granzymes , Optical Imaging , Peptides/chemistry , T-Lymphocytes/enzymology , Cell Line, Tumor , Granzymes/chemistry , Granzymes/metabolism , Humans
7.
J Med Chem ; 63(6): 3359-3369, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32142286

ABSTRACT

Cytotoxic T-lymphocytes (CTLs) and natural killer cells (NKs) kill compromised cells to defend against tumor and viral infections. Both effector cell types use multiple strategies to induce target cell death including Fas/CD95 activation and the release of perforin and a group of lymphocyte granule serine proteases called granzymes. Granzymes have relatively broad and overlapping substrate specificities and may hydrolyze a wide range of peptidic epitopes; it is therefore challenging to identify their natural and synthetic substrates and to distinguish their localization and functions. Here, we present a specific and potent substrate, an inhibitor, and an activity-based probe of Granzyme A (GrA) that can be used to follow functional GrA in cells.


Subject(s)
Coumarins/pharmacology , Fluorescent Dyes/pharmacology , Granzymes/analysis , Oligopeptides/pharmacology , Serine Proteinase Inhibitors/pharmacology , Cell Line, Tumor , Coumarins/chemical synthesis , Coumarins/toxicity , Drug Design , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/toxicity , Granzymes/chemistry , Humans , Oligopeptides/chemical synthesis , Oligopeptides/toxicity , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/toxicity , Substrate Specificity
8.
J Biol Chem ; 295(51): 17624-17631, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33454002

ABSTRACT

Neutrophils are primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils prevent the spread of pathogens is NETosis, the extrusion of cellular DNA resulting in neutrophil extracellular traps (NETs). The protease neutrophil elastase (NE) has been implicated in the formation of NETs through proteolysis of nuclear proteins leading to chromatin decondensation. In addition to NE, neutrophils contain three other serine proteases that could compensate if the activity of NE was neutralized. However, whether they do play such a role is unknown. Thus, we deployed recently described specific inhibitors against all four of the neutrophil serine proteases (NSPs). Using specific antibodies to the NSPs along with our labeled inhibitors, we show that catalytic activity of these enzymes is not required for the formation of NETs. Moreover, the NSPs that decorate NETs are in an inactive conformation and thus cannot participate in further catalytic events. These results indicate that NSPs play no role in either NETosis or arming NETs with proteolytic activity.


Subject(s)
Extracellular Traps/metabolism , Neutrophils/enzymology , Serine Proteases/metabolism , Animals , Antibodies/chemistry , Antibodies/immunology , Candida albicans/physiology , DNA/metabolism , Escherichia coli/physiology , Extracellular Traps/drug effects , Humans , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/immunology , Leukocyte Elastase/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Microscopy, Confocal , Neutrophils/drug effects , Pyroptosis/drug effects , RAW 264.7 Cells , Serine Proteases/chemistry , Serine Proteases/immunology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/metabolism , Tetradecanoylphorbol Acetate/pharmacology
9.
Biochimie ; 166: 103-111, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31103725

ABSTRACT

Cathepsin G is one of four members of the neutrophil serine protease family and constitutes an important biological target in various human inflammatory diseases, such as chronic obstructive pulmonary disease, acute respiratory distress syndrome and cystic fibrosis. Many studies have been focused on determining its biological roles, the latest ones concerning its involvement in acute myeloid leukemia, and as such, multiple chemical and biochemical tools were developed to investigate cathepsin G. Nevertheless, most of them lack selectivity or sensitivity and therefore cannot be used in complex systems. Here we present the development of an optimal cathepsin G Internally Quenched Fluorescence (IQF) substrate that incorporates unnatural amino acids causing the increase of its selectivity toward neutrophil elastase and potency in in vitro studies.


Subject(s)
Cathepsin G/chemistry , Fluorescent Dyes/chemistry , Leukocyte Elastase/chemistry , Humans , Kinetics , Neutrophils/metabolism , Substrate Specificity
10.
Sci Rep ; 8(1): 15998, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375474

ABSTRACT

Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) belongs to the CD clan of cysteine proteases. MALT1 is a unique enzyme among this clan because it recognizes the basic amino acid arginine in the P1 pocket. Previous studies carried out with natural amino acids revealed the substrate specificity of the P4-P1 pockets of MALT1 but have provided only limited information about the catalytic preferences of this enzyme. In this study, we exploited Hybrid Combinatorial Substrate Library and Internally Quenched Fluorescence substrate technologies to interrogate the extended substrate specificity profile of the S5-S2' active site pockets using unnatural amino acids. This strategy resulted in the design of a peptide-based fluorogenic substrate, which exhibited significant activity toward MALT1. Subsequently, the substrate sequence was further utilized to develop potent, irreversible activity-based probes.


Subject(s)
Amino Acid Sequence/genetics , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/chemistry , Peptides/chemistry , Amino Acids/chemistry , Amino Acids/genetics , Animals , Arginine/chemistry , Kinetics , Mice , Models, Molecular , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Peptides/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...