Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev E ; 102(5-1): 052120, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33327099

ABSTRACT

The thermal rounding of the depinning transition of an elastic interface sliding on a washboard potential is studied through analytic arguments and very accurate numerical simulations. We confirm the standard view that well below the depinning threshold the average velocity can be calculated considering thermally activated nucleation of defects. However, we find that the straightforward extension of this analysis to near or above the depinning threshold does not fully describe the physics of the thermally assisted motion. In particular, we find that exactly at the depinning point the average velocity does not follow a pure power law of the temperature as naively expected by the analogy with standard phase transitions but presents subtle logarithmic corrections. We explain the physical mechanisms behind these corrections and argue that they are nonpeculiar collective effects which may also apply to the case of interfaces sliding on uncorrelated disordered landscapes.

2.
Phys Rev E ; 99(3-1): 032105, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30999460

ABSTRACT

We study the roughening of d-dimensional directed elastic interfaces subject to quenched random forces. As in the Larkin model, random forces are considered constant in the displacement direction and uncorrelated in the perpendicular direction. The elastic energy density contains an harmonic part, proportional to (∂_{x}u)^{2}, and an anharmonic part, proportional to (∂_{x}u)^{2n}, where u is the displacement field and n>1 an integer. By heuristic scaling arguments, we obtain the global roughness exponent ζ, the dynamic exponent z, and the harmonic to anharmonic crossover length scale, for arbitrary d and n, yielding an upper critical dimension d_{c}(n)=4n. We find a precise agreement with numerical calculations in d=1. For the d=1 case we observe, however, an anomalous "faceted" scaling, with the spectral roughness exponent ζ_{s} satisfying ζ_{s}>ζ>1 for any finite n>1, hence invalidating the usual single-exponent scaling for two-point correlation functions, and the small gradient approximation of the elastic energy density in the thermodynamic limit. We show that such d=1 case is directly related to a family of Brownian functionals parameterized by n, ranging from the random-acceleration model for n=1 to the Lévy arcsine-law problem for n=∞. Our results may be experimentally relevant for describing the roughening of nonlinear elastic interfaces in a Matheron-de Marsilly type of random flow.

3.
Phys Rev E ; 96(2-1): 022112, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28950448

ABSTRACT

We study the slow stochastic dynamics near the depinning threshold of an elastic interface in a random medium by solving a particularly suited model of hopping interacting particles that belongs to the quenched-Edwards-Wilkinson depinning universality class. The model allows us to compare the cases of uniformly activated and Arrhenius activated hops. In the former case, the velocity accurately follows a standard scaling law of the force and noise intensity with the analog of the thermal rounding exponent satisfying a modified "hyperscaling" relation. For the Arrhenius activation, we find, both numerically and analytically, that the standard scaling form fails for any value of the thermal rounding exponent. We propose an alternative scaling incorporating logarithmic corrections that appropriately fits the numerical results. We argue that this anomalous scaling is related to the strong correlation between activated hops that, alternated with deterministic depinning-like avalanches, occur below the depinning threshold. We rationalize the spatiotemporal patterns by making an analogy of the present model in the near-threshold creep regime with some well-known models with extremal dynamics, particularly the Bak-Sneppen model.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 1): 021144, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22463189

ABSTRACT

We study numerically thermal effects at the depinning transition of an elastic string driven in a two-dimensional uncorrelated disorder potential. The velocity of the string exactly at the sample critical force is shown to behave as V~T(ψ), with ψ the thermal rounding exponent. We show that the computed value of the thermal rounding exponent, ψ=0.15, is robust and accounts for the different scaling properties of several observables both in the steady state and in the transient relaxation to the steady state. In particular, we show the compatibility of the thermal rounding exponent with the scaling properties of the steady-state structure factor, the universal short-time dynamics of the transient velocity at the sample critical force, and the velocity scaling function describing the joint dependence of the steady-state velocity on the external drive and temperature.


Subject(s)
Models, Chemical , Models, Molecular , Polymers/chemistry , Computer Simulation , Elastic Modulus , Hot Temperature
5.
Phys Rev Lett ; 86(18): 4112-5, 2001 Apr 30.
Article in English | MEDLINE | ID: mdl-11328108

ABSTRACT

We find mode-locking steps in simulated current-voltage characteristics of ac-driven vortex lattices with random pinning. For low frequencies there is mode locking above a finite ac force amplitude, while for large frequencies there is mode locking for any small ac force. This is correlated with the nature of temporal order in the different regimes in the absence of ac drive. The mode-locked state is a frozen solid pinned in the moving reference of frame, and the depinning from the step shows plastic flow and hysteresis.

SELECTION OF CITATIONS
SEARCH DETAIL