Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 31(28): 7860-8, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26119590

ABSTRACT

The formation of highly ordered spherical aggregates of silica nanoparticles by the evaporation of single droplets of an aqueous colloidal suspension levitated (confined) in the electrodynamic quadrupole trap is reported. The transient and final structures formed during droplet evaporation have been deposited on a silicon substrate and then studied with SEM. Various successive stages of the evaporation-driven aggregation of nanoparticles have been identified: formation of the surface layer of nanoparticles, formation of the highly ordered spherical structure, collapse of the spherical surface layer leading to the formation of densely packed spherical aggregates, and rearrangement of the aggregate into the final structure of a stable 3D quasi-crystal. The evaporation-driven aggregation of submicrometer particles in spherical symmetry leads to sizes and morphologies of the transient and final structures significantly different than in the case of aggregation on a substrate. The numerical model presented in the article allows us to predict and visualize the observed aggregation stages and their dynamics and the final aggregates observed with SEM.

2.
Rep Prog Phys ; 76(3): 034601, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23439452

ABSTRACT

Evaporation is ubiquitous in nature. This process influences the climate, the formation of clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car engines, the structure of dried materials and many other phenomena. Recent experiments discovered two novel mechanisms accompanying evaporation: temperature discontinuity at the liquid-vapour interface during evaporation and equilibration of pressures in the whole system during evaporation. None of these effects has been predicted previously by existing theories despite the fact that after 130 years of investigation the theory of evaporation was believed to be mature. These two effects call for reanalysis of existing experimental data and such is the goal of this review. In this article we analyse the experimental and the computational simulation data on the droplet evaporation of several different systems: water into its own vapour, water into the air, diethylene glycol into nitrogen and argon into its own vapour. We show that the temperature discontinuity at the liquid-vapour interface discovered by Fang and Ward (1999 Phys. Rev. E 59 417-28) is a rule rather than an exception. We show in computer simulations for a single-component system (argon) that this discontinuity is due to the constraint of momentum/pressure equilibrium during evaporation. For high vapour pressure the temperature is continuous across the liquid-vapour interface, while for small vapour pressures the temperature is discontinuous. The temperature jump at the interface is inversely proportional to the vapour density close to the interface. We have also found that all analysed data are described by the following equation: da/dt = P(1)/(a + P(2)), where a is the radius of the evaporating droplet, t is time and P(1) and P(2) are two parameters. P(1) = -λΔT/(q(eff)ρ(L)), where λ is the thermal conductivity coefficient in the vapour at the interface, ΔT is the temperature difference between the liquid droplet and the vapour far from the interface, q(eff) is the enthalpy of evaporation per unit mass and ρ(L) is the liquid density. The P(2) parameter is the kinetic correction proportional to the evaporation coefficient. P(2) = 0 only in the absence of temperature discontinuity at the interface. We discuss various models and problems in the determination of the evaporation coefficient and discuss evaporation scenarios in the case of single- and multi-component systems.

3.
J Phys Chem A ; 114(10): 3483-8, 2010 Mar 18.
Article in English | MEDLINE | ID: mdl-20166737

ABSTRACT

Evaporation of motionless, levitating droplets of pure, low-volatility liquids was studied with interferometric methods. Experiments were conducted on charged droplets in the electrodynamic trap in nitrogen at atmospheric pressure at 298 K. Mono-, di-, tri-, and tetra(ethylene glycols) and 1,3-dimethyl-2-imidazolidinone were studied. The influence of minute impurities (<0.1%) upon the process of droplet evaporation was observed and discussed. The gas phase diffusion and evaporation coefficients were found from droplet radii evolution under the assumption of known vapor pressure. Diffusion coefficients were compared with independent measurements and calculations (in air). Good agreement was found for mono- and di(ethylene glycols), and for 1,3-dimethyl-2-imidazolidinone, which confirmed the used vapor pressure values. The value of equilibrium vapor pressure for tri(ethylene glycol) was proposed to be 0.044 +/- 0.008 Pa. The evaporation coefficient was found to increase from 0.035 to 0.16 versus the molecular mass of the compound.


Subject(s)
Gases/chemistry , Nitrogen/chemistry , Organic Chemicals/chemistry , Solvents/chemistry , Diffusion , Glycols/chemistry , Interferometry , Pressure , Temperature , Volatilization
4.
J Phys Chem A ; 112(23): 5152-8, 2008 Jun 12.
Article in English | MEDLINE | ID: mdl-18491849

ABSTRACT

The evaporation coefficients of water in air and nitrogen were found as a function of temperature by studying the evaporation of a pure water droplet. The droplet was levitated in an electrodynamic trap placed in a climatic chamber maintaining atmospheric pressure. Droplet radius evolution and evaporation dynamics were studied with high precision by analyzing the angle-resolved light scattering Mie interference patterns. A model of quasi-stationary droplet evolution accounting for the kinetic effects near the droplet surface was applied. In particular, the effect of thermal effusion (a short-range analogue of thermal diffusion) was discussed and accounted for. The evaporation coefficient alpha in air and in nitrogen were found to be equal. The alpha was found to decrease from approximately 0.18 to approximately 0.13 for the temperature range from 273.1 to 293.1 K and follow the trend given by the Arrhenius formula. The agreement with condensation coefficient values obtained with an essentially different method by Li et al. [Li, Y.; Davidovits, P.; Shi, Q.; Jayne, J.; Kolb, C.; Worsnop, D. J. Phys. Chem. A. 2001, 105, 10627] was found to be excellent. The comparison of experimental conditions used in both methods revealed no dependence of the evaporation/condensation coefficient on the droplet charge nor the ambient gas pressure within the experimental parameters range. The average value of the thermal accommodation coefficient over the same temperature range was found to be 1 +/- 0.05.

SELECTION OF CITATIONS
SEARCH DETAIL
...