Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
2.
Metabolites ; 13(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37755295

ABSTRACT

Research in the field of exercise physiology has evolved dramatically over the last century [...].

3.
Metabolites ; 12(10)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36295850

ABSTRACT

Although exercise training is an important recommendation for the management of type 1 diabetes (T1D), most of the available research studies predominantly focus on male subjects. Given the importance of sex as a biological variable, additional studies are required to improve the knowledge gap regarding sex differences in T1D research. Therefore, the purpose of this study was to examine the role of exercise training in mediating changes in glucose homeostasis and skeletal muscle metabolism in T1D female mice. Female mice were injected with streptozotocin (STZ) to induce T1D. Two weeks after STZ injection, control (CON) and STZ mice were exercise trained on a treadmill for 4 weeks. Aerobic exercise training failed to improve glucose tolerance, prevent the decrease in body weight and adipose tissue mass, or attenuate muscle atrophy in T1D female mice. However, insulin sensitivity was improved in T1D female mice after exercise training. Aerobic exercise training maintained skeletal muscle triglyceride content but did not prevent depletion of skeletal muscle or liver glycogen in T1D mice. Gene expression analysis suggested that T1D resulted in decreased glucose transport, decreased ketone body oxidation, and increased fatty acid metabolism in the skeletal muscle, which was not altered by exercise training. These data demonstrate that 4 weeks of aerobic exercise training of a moderate intensity is insufficient to counteract the negative effects of T1D in female mice, but does lead to an improvement in insulin sensitivity.

5.
J Clin Invest ; 132(10)2022 05 16.
Article in English | MEDLINE | ID: mdl-35575090

ABSTRACT

In hypertrophied and failing hearts, fuel metabolism is reprogrammed to increase glucose metabolism, especially glycolysis. This metabolic shift favors biosynthetic function at the expense of ATP production. Mechanisms responsible for the switch are poorly understood. We found that inhibitory factor 1 of the mitochondrial FoF1-ATP synthase (ATPIF1), a protein known to inhibit ATP hydrolysis by the reverse function of ATP synthase during ischemia, was significantly upregulated in pathological cardiac hypertrophy induced by pressure overload, myocardial infarction, or α-adrenergic stimulation. Chemical cross-linking mass spectrometry analysis of hearts hypertrophied by pressure overload suggested that increased expression of ATPIF1 promoted the formation of FoF1-ATP synthase nonproductive tetramer. Using ATPIF1 gain- and loss-of-function cell models, we demonstrated that stalled electron flow due to impaired ATP synthase activity triggered mitochondrial ROS generation, which stabilized HIF1α, leading to transcriptional activation of glycolysis. Cardiac-specific deletion of ATPIF1 in mice prevented the metabolic switch and protected against the pathological remodeling during chronic stress. These results uncover a function of ATPIF1 in nonischemic hearts, which gives FoF1-ATP synthase a critical role in metabolic rewiring during the pathological remodeling of the heart.


Subject(s)
Glycolysis , Mitochondrial Proton-Translocating ATPases , Proteins/metabolism , Adenosine Triphosphate/metabolism , Animals , Mice , Myocardium/metabolism , Transcriptional Activation , Up-Regulation , ATPase Inhibitory Protein
6.
Physiol Rep ; 10(3): e15174, 2022 02.
Article in English | MEDLINE | ID: mdl-35133078

ABSTRACT

Previous studies suggest that sex differences in lipid metabolism exist with females demonstrating a higher utilization of lipids during exercise, which is mediated partly by increased utilization of muscle triglycerides. However, whether these changes in lipid metabolism contribute directly to endurance exercise performance is unclear. Therefore, the objective of this study was to investigate the contribution of exercise substrate metabolism to sex differences in endurance exercise capacity (EEC) in mice. Male and female C57BL/6-NCrl mice were subjected to an EEC test until exhaustion on a motorized treadmill. The treadmill was set at a 10% incline, and the speed gradually increased from 10.2 m/min to 22.2 m/min at fixed intervals for up to 2.5 h. Tissues and blood were harvested in mice immediately following the EEC. A cohort of sedentary, non-exercised male and female mice were used as controls. Females outperformed males by ~25% on the EEC. Serum levels of both fatty acids and ketone bodies were ~50% higher in females at the end of the EEC. In sedentary female mice, skeletal muscle triglyceride content was significantly greater compared to sedentary males. Gene expression analysis demonstrated that genes involved in skeletal muscle fatty acid oxidation were significantly higher in females with no changes in genes associated with glucose uptake or ketone body oxidation. The findings suggest that female mice have a higher endurance exercise capacity and a greater ability to mobilize and utilize fatty acids for energy.


Subject(s)
Lipid Metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/methods , Running , Animals , Female , Ketone Bodies/blood , Ketone Bodies/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiology , Sex Characteristics , Triglycerides/blood , Triglycerides/metabolism
7.
Front Cardiovasc Med ; 8: 789458, 2021.
Article in English | MEDLINE | ID: mdl-34950719

ABSTRACT

Ketone bodies have been identified as an important, alternative fuel source in heart failure. In addition, the use of ketone bodies as a fuel source has been suggested to be a potential ergogenic aid for endurance exercise performance. These findings have certainly renewed interest in the use of ketogenic diets and exogenous supplementation in an effort to improve overall health and disease. However, given the prevalence of ischemic heart disease and myocardial infarctions, these strategies may not be ideal for individuals with coronary artery disease. Although research studies have clearly defined changes in fatty acid and glucose metabolism during ischemia and reperfusion, the role of ketone body metabolism in the ischemic and reperfused myocardium is less clear. This review will provide an overview of ketone body metabolism, including the induction of ketosis via physiological or nutritional strategies. In addition, the contribution of ketone body metabolism in healthy and diseased states, with a particular emphasis on ischemia-reperfusion (I-R) injury will be discussed.

8.
Metabolites ; 11(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207054

ABSTRACT

The promotion of ketone body (KB) metabolism via ketosis has been suggested as a strategy to increase exercise performance. However, studies in humans and animals have yielded inconsistent results. The purpose of the current study was to examine the effects of ketosis, achieved via fasting or a short-term ketogenic diet (KD), on endurance exercise performance in female mice. After 8 h of fasting, serum KB significantly increased and serum glucose significantly decreased in fasted compared to fed mice. When subjected to an endurance exercise capacity (EEC) test on a motorized treadmill, both fed and fasted mice showed similar EEC performance. A 5-week KD (90% calories from fat) significantly increased serum KB but did not increase EEC times compared to chow-fed mice. KD mice gained significantly more weight than chow-fed mice and had greater adipose tissue mass. Biochemical tissue analysis showed that KD led to significant increases in triglyceride content in the heart and liver and significant decreases in glycogen content in the muscle and liver. Furthermore, KD downregulated genes involved in glucose and KB oxidation and upregulated genes involved in lipid metabolism in the heart. These findings suggest that a short-term KD is not an effective strategy to enhance exercise performance and may lead to increased adiposity, abnormal endogenous tissue storage, and cardiometabolic remodeling.

9.
J Mol Cell Cardiol ; 158: 1-10, 2021 09.
Article in English | MEDLINE | ID: mdl-33989657

ABSTRACT

BACKGROUND: Reduced fatty acid oxidation (FAO) is a hallmark of metabolic remodeling in heart failure. Enhancing mitochondrial long-chain fatty acid uptake by Acetyl-CoA carboxylase 2 (ACC2) deletion increases FAO and prevents cardiac dysfunction during chronic stresses, but therapeutic efficacy of this approach has not been determined. METHODS: Male and female ACC2 f/f-MCM (ACC2KO) and their respective littermate controls were subjected to chronic pressure overload by TAC surgery. Tamoxifen injection 3 weeks after TAC induced ACC2 deletion and increased FAO in ACC2KO mice with pathological hypertrophy. RESULTS: ACC2 deletion in mice with pre-existing cardiac pathology promoted FAO in female and male hearts, but improved cardiac function only in female mice. In males, pressure overload caused a downregulation in the mitochondrial oxidative function. Stimulating FAO by ACC2 deletion caused unproductive acyl-carnitine accumulation, which failed to improve cardiac energetics. In contrast, mitochondrial oxidative capacity was sustained in female pressure overloaded hearts and ACC2 deletion improved myocardial energetics. Mechanistically, we revealed a sex-dependent regulation of PPARα signaling pathway in heart failure, which accounted for the differential response to ACC2 deletion. CONCLUSION: Metabolic remodeling in the failing heart is sex-dependent which could determine the response to metabolic intervention. The findings suggest that both mitochondrial oxidative capacity and substrate preference should be considered for metabolic therapy of heart failure.


Subject(s)
Acetyl-CoA Carboxylase/metabolism , Fatty Acids/metabolism , Heart Failure/metabolism , PPAR alpha/metabolism , Signal Transduction/genetics , Acetyl-CoA Carboxylase/genetics , Animals , Carnitine/analogs & derivatives , Carnitine/metabolism , Disease Models, Animal , Energy Metabolism/drug effects , Energy Metabolism/genetics , Female , Gene Deletion , Heart Failure/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocardium/metabolism , Oxidation-Reduction , Sex Factors , Signal Transduction/drug effects , Tamoxifen/administration & dosage
10.
Circulation ; 142(10): 983-997, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32597196

ABSTRACT

BACKGROUND: Increased fatty acid oxidation (FAO) has long been considered a culprit in the development of obesity/diabetes mellitus-induced cardiomyopathy. However, enhancing cardiac FAO by removing the inhibitory mechanism of long-chain fatty acid transport into mitochondria via deletion of acetyl coenzyme A carboxylase 2 (ACC2) does not cause cardiomyopathy in nonobese mice, suggesting that high FAO is distinct from cardiac lipotoxicity. We hypothesize that cardiac pathology-associated obesity is attributable to the imbalance of fatty acid supply and oxidation. Thus, we here seek to determine whether further increasing FAO by inducing ACC2 deletion prevents obesity-induced cardiomyopathy, and if so, to elucidate the underlying mechanisms. METHODS: We induced high FAO in adult mouse hearts by cardiac-specific deletion of ACC2 using a tamoxifen-inducible model (ACC2 iKO). Control and ACC2 iKO mice were subjected to high-fat diet (HFD) feeding for 24 weeks to induce obesity. Cardiac function, mitochondria function, and mitophagy activity were examined. RESULTS: Despite both control and ACC2 iKO mice exhibiting a similar obese phenotype, increasing FAO oxidation by deletion of ACC2 prevented HFD-induced cardiac dysfunction, pathological remodeling, and mitochondria dysfunction, as well. Similarly, increasing FAO by knockdown of ACC2 prevented palmitate-induced mitochondria dysfunction and cardiomyocyte death in vitro. Furthermore, HFD suppressed mitophagy activity and caused damaged mitochondria to accumulate in the heart, which was attenuated, in part, in the ACC2 iKO heart. Mechanistically, ACC2 iKO prevented HFD-induced downregulation of parkin. During stimulation for mitophagy, mitochondria-localized parkin was severely reduced in control HFD-fed mouse heart, which was restored, in part, in ACC2 iKO HFD-fed mice. CONCLUSIONS: These data show that increasing cardiac FAO alone does not cause cardiac dysfunction, but protects against cardiomyopathy in chronically obese mice. The beneficial effect of enhancing cardiac FAO in HFD-induced obesity is mediated, in part, by the maintenance of mitochondria function through regulating parkin-mediated mitophagy. Our findings also suggest that targeting the parkin-dependent mitophagy pathway could be an effective strategy against the development of obesity-induced cardiomyopathy.


Subject(s)
Cardiomyopathies/prevention & control , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Mitochondria, Heart/metabolism , Mitophagy/drug effects , Ubiquitin-Protein Ligases/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Mice , Mice, Knockout , Mitochondria, Heart/genetics , Mitophagy/genetics , Oxidation-Reduction/drug effects , Ubiquitin-Protein Ligases/genetics
11.
Circ Res ; 126(2): 182-196, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31709908

ABSTRACT

RATIONALE: Hypertrophied hearts switch from mainly using fatty acids (FAs) to an increased reliance on glucose for energy production. It has been shown that preserving FA oxidation (FAO) prevents the pathological shift of substrate preference, preserves cardiac function and energetics, and reduces cardiomyocyte hypertrophy during cardiac stresses. However, it remains elusive whether substrate metabolism regulates cardiomyocyte hypertrophy directly or via a secondary effect of improving cardiac energetics. OBJECTIVE: The goal of this study was to determine the mechanisms of how preservation of FAO prevents the hypertrophic growth of cardiomyocytes. METHODS AND RESULTS: We cultured adult rat cardiomyocytes in a medium containing glucose and mixed-chain FAs and induced pathological hypertrophy by phenylephrine. Phenylephrine-induced hypertrophy was associated with increased glucose consumption and higher intracellular aspartate levels, resulting in increased synthesis of nucleotides, RNA, and proteins. These changes could be prevented by increasing FAO via deletion of ACC2 (acetyl-CoA-carboxylase 2) in phenylephrine-stimulated cardiomyocytes and in pressure overload-induced cardiac hypertrophy in vivo. Furthermore, aspartate supplementation was sufficient to reverse the antihypertrophic effect of ACC2 deletion demonstrating a causal role of elevated aspartate level in cardiomyocyte hypertrophy. 15N and 13C stable isotope tracing revealed that glucose but not glutamine contributed to increased biosynthesis of aspartate, which supplied nitrogen for nucleotide synthesis during cardiomyocyte hypertrophy. CONCLUSIONS: Our data show that increased glucose consumption is required to support aspartate synthesis that drives the increase of biomass during cardiac hypertrophy. Preservation of FAO prevents the shift of metabolic flux into the anabolic pathway and maintains catabolic metabolism for energy production, thus preventing cardiac hypertrophy and improving myocardial energetics.


Subject(s)
Aspartic Acid/biosynthesis , Cardiomegaly/metabolism , Glucose/metabolism , Myocytes, Cardiac/metabolism , Acetyl-CoA Carboxylase/metabolism , Animals , Aspartic Acid/pharmacology , Cardiomegaly/etiology , Cells, Cultured , Fatty Acids/metabolism , Male , Mice , Myocytes, Cardiac/drug effects , Rats , Rats, Wistar
12.
Stem Cell Reports ; 13(4): 657-668, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31564645

ABSTRACT

Although human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a novel platform for heart regeneration, disease modeling, and drug screening, their immaturity significantly hinders their application. A hallmark of postnatal cardiomyocyte maturation is the metabolic substrate switch from glucose to fatty acids. We hypothesized that fatty acid supplementation would enhance hPSC-CM maturation. Fatty acid treatment induces cardiomyocyte hypertrophy and significantly increases cardiomyocyte force production. The improvement in force generation is accompanied by enhanced calcium transient peak height and kinetics, and by increased action potential upstroke velocity and membrane capacitance. Fatty acids also enhance mitochondrial respiratory reserve capacity. RNA sequencing showed that fatty acid treatment upregulates genes involved in fatty acid ß-oxidation and downregulates genes in lipid synthesis. Signal pathway analyses reveal that fatty acid treatment results in phosphorylation and activation of multiple intracellular kinases. Thus, fatty acids increase human cardiomyocyte hypertrophy, force generation, calcium dynamics, action potential upstroke velocity, and oxidative capacity. This enhanced maturation should facilitate hPSC-CM usage for cell therapy, disease modeling, and drug/toxicity screens.


Subject(s)
Cell Differentiation , Fatty Acids/metabolism , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Calcium/metabolism , Carnitine/metabolism , Cell Line , Dietary Supplements , Humans , Kinetics , Membrane Potentials , Mitochondria, Heart/metabolism , Muscle Contraction , Oxidation-Reduction , Oxidative Phosphorylation , Signal Transduction
13.
Nutrients ; 11(10)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561520

ABSTRACT

The ketogenic diet (KD) has gained a resurgence in popularity due to its purported reputation for fighting obesity. The KD has also acquired attention as an alternative and/or supplemental method for producing energy in the form of ketone bodies. Recent scientific evidence highlights the KD as a promising strategy to treat obesity, diabetes, and cardiac dysfunction. In addition, studies support ketone body supplements as a potential method to induce ketosis and supply sustainable fuel sources to promote exercise performance. Despite the acceptance in the mainstream media, the KD remains controversial in the medical and scientific communities. Research suggests that the KD or ketone body supplementation may result in unexpected side effects, including altered blood lipid profiles, abnormal glucose homeostasis, increased adiposity, fatigue, and gastrointestinal distress. The purpose of this review article is to provide an overview of ketone body metabolism and a background on the KD and ketone body supplements in the context of obesity and exercise performance. The effectiveness of these dietary or supplementation strategies as a therapy for weight loss or as an ergogenic aid will be discussed. In addition, the recent evidence that indicates ketone body metabolism is a potential target for cardiac dysfunction will be reviewed.


Subject(s)
Diet, Ketogenic/methods , Dietary Supplements , Ketone Bodies/pharmacology , Obesity/diet therapy , Performance-Enhancing Substances/pharmacology , Exercise/physiology , Humans , Obesity/metabolism , Physical Functional Performance
14.
Nutrients ; 11(9)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443528

ABSTRACT

Severe food restriction (FR) impairs cardiac performance, although the causative mechanisms remain elusive. Since proteins associated with calcium handling may contribute to cardiac dysfunction, this study aimed to evaluate whether severe FR results in alterations in the expression and activity of Ca2+-handling proteins that contribute to impaired myocardial performance. Male 60-day-old Wistar-Kyoto rats were fed a control or restricted diet (50% reduction in the food consumed by the control group) for 90 days. Body weight, body fat pads, adiposity index, as well as the weights of the soleus muscle and lung, were obtained. Cardiac remodeling was assessed by morphological measures. The myocardial contractile performance was analyzed in isolated papillary muscles during the administration of extracellular Ca2+ and in the absence or presence of a sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) specific blocker. The expression of Ca2+-handling regulatory proteins was analyzed via Western Blot. Severe FR resulted in a 50% decrease in body weight and adiposity measures. Cardiac morphometry was substantially altered, as heart weights were nearly twofold lower in FR rats. Papillary muscles isolated from FR hearts displayed mechanical dysfunction, including decreased developed tension and reduced contractility and relaxation. The administration of a SERCA2a blocker led to further decrements in contractile function in FR hearts, suggesting impaired SERCA2a activity. Moreover, the FR rats presented a lower expression of L-type Ca2+ channels. Therefore, myocardial dysfunction induced by severe food restriction is associated with changes in the calcium-handling properties in rats.


Subject(s)
Calcium Signaling , Calcium/metabolism , Caloric Restriction , Heart Diseases/etiology , Malnutrition/complications , Mitochondria, Heart/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Papillary Muscles/metabolism , Adiposity , Animals , Calcium Channels, L-Type/metabolism , Disease Models, Animal , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Male , Malnutrition/metabolism , Malnutrition/pathology , Malnutrition/physiopathology , Mitochondria, Heart/pathology , Myocytes, Cardiac/pathology , Papillary Muscles/pathology , Papillary Muscles/physiopathology , Rats, Inbred WKY , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Weight Loss
15.
JACC Basic Transl Sci ; 4(7): 778-791, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31998848

ABSTRACT

Mutations in the gene encoding for dystrophin leads to structural and functional deterioration of cardiomyocytes and is a hallmark of cardiomyopathy in Duchenne muscular dystrophy (DMD) patients. Administration of recombinant adeno-associated viral vectors delivering microdystrophin or ribonucleotide reductase (RNR), under muscle-specific regulatory control, rescues both baseline and high workload-challenged hearts in an aged, DMD mouse model. However, only RNR treatments improved both systolic and diastolic function under those conditions. Cardiac-specific recombinant adeno-associated viral treatment of RNR holds therapeutic promise for improvement of cardiomyopathy in DMD patients.

16.
J Mol Cell Cardiol ; 123: 38-45, 2018 10.
Article in English | MEDLINE | ID: mdl-30165037

ABSTRACT

RATIONALE: Ischemic heart disease (IHD) is a leading cause of mortality. The most effective intervention for IHD is reperfusion, which ironically causes ischemia reperfusion (I/R) injury mainly due to oxidative stress-induced cardiomyocyte death. The exact mechanism and site of reactive oxygen species (ROS) generation during I/R injury remain elusive. OBJECTIVE: We aim to test the hypothesis that Complex I-mediated forward and reverse electron flows are the major source of ROS in I/R injury of the heart. METHODS AND RESULTS: We used a genetic model of mitochondrial Complex I deficiency, in which a Complex I assembling subunit, Ndufs4 was knocked out in the heart (Ndufs4H-/-). The Langendorff perfused Ndufs4H-/- hearts exhibited significantly reduced infarct size (45.3 ±â€¯5.5% in wild type vs 20.9 ±â€¯8.1% in Ndufs4H-/-), recovered contractile function, and maintained mitochondrial membrane potential after no flow ischemia and subsequent reperfusion. In cultured adult cardiomyocytes from Ndufs4H-/- mice, I/R mimetic treatments caused minimal cell death. Reintroducing Ndufs4 in Ndufs4H-/- cardiomyocytes abolished the protection. Mitochondrial NADH declined much slower in Ndufs4H-/- cardiomyocytes during reperfusion suggesting decreased forward electron flow. Mitochondrial flashes, a marker for mitochondrial respiration, were inhibited in Ndufs4H-/- cardiomyocytes at baseline and during I/R, which was accompanied by preserved aconitase activity suggesting lack of oxidative damage. Finally, pharmacological blockade of forward and reverse electron flow at Complex I inhibited I/R-induced cell death. CONCLUSIONS: These results provide the first genetic evidence supporting the central role of mitochondrial Complex I in I/R injury of mouse heart. The study also suggests that both forward and reverse electron flows underlie oxidative cardiomyocyte death during reperfusion.


Subject(s)
Electron Transport Complex I/genetics , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Animals , Biomarkers , Biopsy , Cell Death/genetics , Cell Respiration/genetics , Disease Models, Animal , Electron Transport Complex I/metabolism , Fluorescent Antibody Technique , Genetic Predisposition to Disease , Mice , Mice, Knockout , Mice, Transgenic , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Models, Biological , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Organ Specificity/genetics , Oxidative Stress , Reactive Oxygen Species/metabolism
17.
Nat Commun ; 9(1): 2935, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30050148

ABSTRACT

Glucose and branched-chain amino acids (BCAAs) are essential nutrients and key determinants of cell growth and stress responses. High BCAA level inhibits glucose metabolism but reciprocal regulation of BCAA metabolism by glucose has not been demonstrated. Here we show that glucose suppresses BCAA catabolism in cardiomyocytes to promote hypertrophic response. High glucose inhibits CREB stimulated KLF15 transcription resulting in downregulation of enzymes in the BCAA catabolism pathway. Accumulation of BCAA through the glucose-KLF15-BCAA degradation axis is required for the activation of mTOR signaling during the hypertrophic growth of cardiomyocytes. Restoration of KLF15 prevents cardiac hypertrophy in response to pressure overload in wildtype mice but not in mutant mice deficient of BCAA degradation gene. Thus, regulation of KLF15 transcription by glucose is critical for the glucose-BCAA circuit which controls a cascade of obligatory metabolic responses previously unrecognized for cell growth.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Glucose/pharmacology , Animals , Cell Cycle/drug effects , Cell Proliferation/drug effects , Computational Biology , Echocardiography , HEK293 Cells , Humans , Male , Mice , Signal Transduction/drug effects
18.
Front Cardiovasc Med ; 5: 66, 2018.
Article in English | MEDLINE | ID: mdl-29930946

ABSTRACT

Research has demonstrated that the high capacity requirements of the heart are satisfied by a preference for oxidation of fatty acids. However, it is well known that a stressed heart, as in pathological hypertrophy, deviates from its inherent profile and relies heavily on glucose metabolism, primarily achieved by an acceleration in glycolysis. Moreover, it has been suggested that the chronically lipid overloaded heart augments fatty acid oxidation and triglyceride synthesis to an even greater degree and, thus, develops a lipotoxic phenotype. In comparison, classic studies in exercise physiology have provided a basis for the acute metabolic changes that occur during physical activity. During an acute bout of exercise, whole body glucose metabolism increases proportionately to intensity while fatty acid metabolism gradually increases throughout the duration of activity, particularly during moderate intensity. However, the studies in chronic exercise training are primarily limited to metabolic adaptations in skeletal muscle or to the mechanisms that govern physiological signaling pathways in the heart. Therefore, the purpose of this review is to discuss the precise changes that chronic exercise training elicits on cardiac metabolism, particularly on substrate utilization. Although conflicting data exists, a pattern of enhanced fatty oxidation and normalization of glycolysis emerges, which may be a therapeutic strategy to prevent or regress the metabolic phenotype of the hypertrophied heart. This review also expands on the metabolic adaptations that chronic exercise training elicits in amino acid and ketone body metabolism, which have become of increased interest recently. Lastly, challenges with exercise training studies, which could relate to several variables including model, training modality, and metabolic parameter assessed, are examined.

19.
Cardiovasc Res ; 114(10): 1324-1334, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29635338

ABSTRACT

Aims: Mitochondrial fatty acid oxidation (FAO) is an important energy provider for cardiac work and changes in cardiac substrate preference are associated with different heart diseases. Carnitine palmitoyltransferase 1B (CPT1B) is thought to perform the rate limiting enzyme step in FAO and is inhibited by malonyl-CoA. The role of CPT1B in cardiac metabolism has been addressed by inhibiting or decreasing CPT1B protein or after modulation of tissue malonyl-CoA metabolism. We assessed the role of CPT1B malonyl-CoA sensitivity in cardiac metabolism. Methods and results: We generated and characterized a knock in mouse model expressing the CPT1BE3A mutant enzyme, which has reduced sensitivity to malonyl-CoA. In isolated perfused hearts, FAO was 1.9-fold higher in Cpt1bE3A/E3A hearts compared with Cpt1bWT/WT hearts. Metabolomic, proteomic and transcriptomic analysis showed increased levels of malonylcarnitine, decreased concentration of CPT1B protein and a small but coordinated downregulation of the mRNA expression of genes involved in FAO in Cpt1bE3A/E3A hearts, all of which aim to limit FAO. In vivo assessment of cardiac function revealed only minor changes, cardiac hypertrophy was absent and histological analysis did not reveal fibrosis. Conclusions: Malonyl-CoA-dependent inhibition of CPT1B plays a crucial role in regulating FAO rate in the heart. Chronic elevation of FAO has a relatively subtle impact on cardiac function at least under baseline conditions.


Subject(s)
Carnitine O-Palmitoyltransferase/metabolism , Energy Metabolism , Fatty Acids/metabolism , Malonyl Coenzyme A/metabolism , Mitochondria, Heart/enzymology , Myocardium/enzymology , Animals , Carnitine O-Palmitoyltransferase/genetics , Genotype , Glucose/metabolism , Glycolysis , Isolated Heart Preparation , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Oxidation-Reduction , Phenotype , Ventricular Function, Left
20.
PLoS One ; 13(3): e0193553, 2018.
Article in English | MEDLINE | ID: mdl-29494668

ABSTRACT

Pathological cardiac hypertrophy leads to derangements in lipid metabolism that may contribute to the development of cardiac dysfunction. Since previous studies, using high saturated fat diets, have yielded inconclusive results, we investigated whether provision of a high-unsaturated fatty acid (HUFA) diet was sufficient to restore impaired lipid metabolism and normalize diastolic dysfunction in the pathologically hypertrophied heart. Male, Wistar rats were subjected to supra-valvar aortic stenosis (SVAS) or sham surgery. After 6 weeks, diastolic dysfunction and pathological hypertrophy was confirmed and both sham and SVAS rats were treated with either normolipidic or HUFA diet. At 18 weeks post-surgery, the HUFA diet failed to normalize decreased E/A ratios or attenuate measures of cardiac hypertrophy in SVAS animals. Enzymatic activity assays and gene expression analysis showed that both normolipidic and HUFA-fed hypertrophied hearts had similar increases in glycolytic enzyme activity and down-regulation of fatty acid oxidation genes. Mass spectrometry analysis revealed depletion of unsaturated fatty acids, primarily linoleate and oleate, within the endogenous lipid pools of normolipidic SVAS hearts. The HUFA diet did not restore linoleate or oleate in the cardiac lipid pools, but did maintain body weight and adipose mass in SVAS animals. Overall, these results suggest that, in addition to decreased fatty acid oxidation, aberrant unsaturated fatty acid metabolism may be a maladaptive signature of the pathologically hypertrophied heart. The HUFA diet is insufficient to reverse metabolic remodeling, diastolic dysfunction, or pathologically hypertrophy, possibly do to preferentially partitioning of unsaturated fatty acids to adipose tissue.


Subject(s)
Aortic Stenosis, Supravalvular/diet therapy , Cardiomegaly/diet therapy , Dietary Fats, Unsaturated/administration & dosage , Lipid Metabolism/drug effects , Animals , Aortic Stenosis, Supravalvular/blood , Aortic Stenosis, Supravalvular/etiology , Cardiomegaly/blood , Cardiomegaly/etiology , Dietary Fats, Unsaturated/pharmacology , Disease Models, Animal , Fatty Acids, Unsaturated/analysis , Gene Expression Regulation/drug effects , Male , Mass Spectrometry , Random Allocation , Rats , Rats, Wistar , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL