Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 13(1): 11123, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37429911

ABSTRACT

Humanity is close to characterizing the atmospheres of rocky exoplanets due to the advent of JWST. These astronomical observations motivate us to understand exoplanetary atmospheres to constrain habitability. We study the influence greenhouse gas supplement has on the atmosphere of TRAPPIST-1e, an Earth-like exoplanet, and Earth itself by analyzing ExoCAM and CMIP6 model simulations. We find an analogous relationship between CO2 supplement and amplified warming at non-irradiated regions (night side and polar)-such spatial heterogeneity results in significant global circulation changes. A dynamical systems framework provides additional insight into the vertical dynamics of the atmospheres. Indeed, we demonstrate that adding CO2 increases temporal stability near the surface and decreases stability at low pressures. Although Earth and TRAPPIST-1e take entirely different climate states, they share the relative response between climate dynamics and greenhouse gas supplements.

3.
Nature ; 620(7973): 292-298, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37257843

ABSTRACT

Close-in giant exoplanets with temperatures greater than 2,000 K ('ultra-hot Jupiters') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope1-3. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis3-12. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS13 instrument on the JWST. The data span 0.85 to 2.85 µm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6σ confidence) and evidence for optical opacity, possibly attributable to H-, TiO and VO (combined significance of 3.8σ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance ('metallicity', [Formula: see text] times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators.

4.
Astrophys J ; 832(1)2016 Nov 20.
Article in English | MEDLINE | ID: mdl-30705445

ABSTRACT

Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld." On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after ~2 Gyr. Using these steady states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (≳0.3% of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

SELECTION OF CITATIONS
SEARCH DETAIL
...