Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 42(2): 305-315, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37095348

ABSTRACT

Simple, efficient and well-tolerated delivery of CRISPR genome editing systems into primary cells remains a major challenge. Here we describe an engineered Peptide-Assisted Genome Editing (PAGE) CRISPR-Cas system for rapid and robust editing of primary cells with minimal toxicity. The PAGE system requires only a 30-min incubation with a cell-penetrating Cas9 or Cas12a and a cell-penetrating endosomal escape peptide to achieve robust single and multiplex genome editing. Unlike electroporation-based methods, PAGE gene editing has low cellular toxicity and shows no significant transcriptional perturbation. We demonstrate rapid and efficient editing of primary cells, including human and mouse T cells, as well as human hematopoietic progenitor cells, with editing efficiencies upwards of 98%. PAGE provides a broadly generalizable platform for next-generation genome engineering in primary cells.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Animals , Mice , Gene Editing/methods , CRISPR-Cas Systems/genetics , Electroporation , Hematopoietic Stem Cells
2.
Nature ; 567(7747): 249-252, 2019 03.
Article in English | MEDLINE | ID: mdl-30842658

ABSTRACT

The liver is the most common site of metastatic disease1. Although this metastatic tropism may reflect the mechanical trapping of circulating tumour cells, liver metastasis is also dependent, at least in part, on the formation of a 'pro-metastatic' niche that supports the spread of tumour cells to the liver2,3. The mechanisms that direct the formation of this niche are poorly understood. Here we show that hepatocytes coordinate myeloid cell accumulation and fibrosis within the liver and, in doing so, increase the susceptibility of the liver to metastatic seeding and outgrowth. During early pancreatic tumorigenesis in mice, hepatocytes show activation of signal transducer and activator of transcription 3 (STAT3) signalling and increased production of serum amyloid A1 and A2 (referred to collectively as SAA). Overexpression of SAA by hepatocytes also occurs in patients with pancreatic and colorectal cancers that have metastasized to the liver, and many patients with locally advanced and metastatic disease show increases in circulating SAA. Activation of STAT3 in hepatocytes and the subsequent production of SAA depend on the release of interleukin 6 (IL-6) into the circulation by non-malignant cells. Genetic ablation or blockade of components of IL-6-STAT3-SAA signalling prevents the establishment of a pro-metastatic niche and inhibits liver metastasis. Our data identify an intercellular network underpinned by hepatocytes that forms the basis of a pro-metastatic niche in the liver, and identify new therapeutic targets.


Subject(s)
Hepatocytes/pathology , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Liver/pathology , Neoplasm Metastasis , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Animals , Carcinoma, Pancreatic Ductal/pathology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/secondary , Female , Interleukin-6/metabolism , Male , Mice , STAT3 Transcription Factor/metabolism , Serum Amyloid A Protein/metabolism
3.
Curr Protoc Pharmacol ; 73: 14.39.1-14.39.20, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27248578

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) ranks fourth among cancer-related deaths in the United States. For patients with unresectable disease, treatment options are limited and lack curative potential. Preclinical mouse models of PDAC that recapitulate the biology of human pancreatic cancer offer an opportunity for the rational development of novel treatment approaches that may improve patient outcomes. With the recent success of immunotherapy for subsets of patients with solid malignancies, interest is mounting in the possible use of immunotherapy for the treatment of PDAC. Considered in this unit is the value of genetic mouse models for characterizing the immunobiology of PDAC and for investigating novel immunotherapeutics. Several variants of these models are described, all of which may be used in drug development and for providing information on unique aspects of disease biology and therapeutic responsiveness. © 2016 by John Wiley & Sons, Inc.


Subject(s)
Animals, Genetically Modified , Carcinoma, Pancreatic Ductal , Disease Models, Animal , Mice , Pancreatic Neoplasms , Animals , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , Drug Discovery , Humans , Immunotherapy , Macrophages , Mice/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...