Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 127(9): 097601, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34506184

ABSTRACT

Electric fields were applied to multiferroic TbMnO_{3} single crystals to control the chiral domains, and the domain relaxation was studied over 8 decades in time by means of polarized neutron scattering. A surprisingly simple combination of an activation law and the Merz law describes the relaxation times in a wide range of electric field and temperature with just two parameters, an activation-field constant and a characteristic time representing the fastest possible inversion. Over the large part of field and temperature values corresponding to almost 6 orders of magnitude in time, multiferroic domain inversion is thus dominated by a single process, the domain wall motion. Only when approaching the multiferroic transition other mechanisms yield an accelerated inversion.

2.
Sci Rep ; 10(1): 18012, 2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33093480

ABSTRACT

We have successfully grown centimeter-sized layered [Formula: see text] single crystals under high oxygen pressures of 120-150 bar by the floating zone technique. This enabled us to perform neutron scattering experiments where we observe close to quarter-integer magnetic peaks below [Formula: see text] that are accompanied by steep upwards dispersing spin excitations. Within the high-frequency Ni-O bond stretching phonon dispersion, a softening at the propagation vector for a checkerboard modulation can be observed. We were able to simulate the magnetic excitation spectra using a model that includes two essential ingredients, namely checkerboard charge disproportionation and nano phase separation. The results thus suggest that charge disproportionation is preferred instead of a Jahn-Teller distortion even for this layered [Formula: see text] system.

3.
J Phys Condens Matter ; 31(22): 225803, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-30836348

ABSTRACT

We investigated the magnetoresistance (MR) of a single crystal of magnetite, Fe3O4. In an effort to distinguish between different contributions to the MR the samples were prepared in two different initial magnetic states, i.e. by either zero-field or by field cooling from room temperature. The different magnetic structures in this sample have a dramatic effect on the magnetoresistance: for initially zero-field-cooled conditions a negative MR of about -20% is observed just below the Verwey transition at [Formula: see text] K. For decreasing temperature the MR increases, changes sign at ∼78 K and reaches a record positive value of ∼45% at around 50 K. This behavior is completely absent in the field-cooled sample. Magnetization measurements corroborate an alignment of the easy magnetization direction in applied magnetic fields below [Formula: see text] as a cause of the strong effects observed in both, magnetization and MR. Our results point to a complex interplay of structural and magnetocrystalline effects taking place upon cooling Fe3O4 through [Formula: see text].

4.
Nat Commun ; 9(1): 43, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29298977

ABSTRACT

The material class of rare earth nickelates with high Ni3+ oxidation state is generating continued interest due to the occurrence of a metal-insulator transition with charge order and the appearance of non-collinear magnetic phases within this insulating regime. The recent theoretical prediction for superconductivity in LaNiO3 thin films has also triggered intensive research efforts. LaNiO3 seems to be the only rare earth nickelate that stays metallic and paramagnetic down to lowest temperatures. So far, centimeter-sized impurity-free single crystal growth has not been reported for the rare earth nickelates material class since elevated oxygen pressures are required for their synthesis. Here, we report on the successful growth of centimeter-sized LaNiO3 single crystals by the floating zone technique at oxygen pressures of up to 150 bar. Our crystals are essentially free from Ni2+ impurities and exhibit metallic properties together with an unexpected but clear antiferromagnetic transition.

5.
RSC Adv ; 8(6): 3142, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-35543871

ABSTRACT

[This corrects the article DOI: 10.1039/C7RA08916C.].

7.
Sci Rep ; 7: 45939, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28378833

ABSTRACT

We report on the magnetic structure of CdMn7O12 determined by powder neutron diffraction. We were able to measure the magnetic structure of this Cd containing and highly neutron absorbing material by optimizing the sample geometry and by blending the CdMn7O12 with Aluminum powder. Below its Néel temperature TN1 all magnetic reflections can be indexed by a single commensurate propagation vector k = (0, 0, 1). This is different to the case of CaMn7O12 where the propagation vector is incommensurate and where an in-plane helical magnetic structure has been found. We observe a commensurate non-collinear magnetic structure in CdMn7O12 with in-plane aligned magnetic moments resembling the ones in CaMn7O12. However, the commensurate propagation vector prevents the appearance of a helical magnetic structure in CdMn7O12. Finally, we also observe a third structural phase transition below ~60 K that can be attributed to phase separation.

8.
Sci Rep ; 6: 25117, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27117928

ABSTRACT

We observe quasi-static incommensurate magnetic peaks in neutron scattering experiments on layered cobalt oxides La2-xSrxCoO4 with high Co oxidation states that have been reported to be paramagnetic. This enables us to measure the magnetic excitations in this highly hole-doped incommensurate regime and compare our results with those found in the low-doped incommensurate regime that exhibit hourglass magnetic spectra. The hourglass shape of magnetic excitations completely disappears given a high Sr doping. Moreover, broad low-energy excitations are found, which are not centered at the incommensurate magnetic peak positions but around the quarter-integer values that are typically exhibited by excitations in the checkerboard charge ordered phase. Our findings suggest that the strong inter-site exchange interactions in the undoped islands are critical for the emergence of hourglass spectra in the incommensurate magnetic phases of La2-xSrxCoO4.

9.
J Phys Condens Matter ; 27(44): 446001, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26452106

ABSTRACT

The control of multiferroic domains through external electric fields has been studied by dielectric measurements and by polarized neutron diffraction on single-crystalline TbMnO3. Full hysteresis cycles were recorded by varying an external field of the order of several kV mm(-1) and by recording the chiral magnetic scattering as well as the charge in a sample capacitor. Both methods yield comparable coercive fields that increase upon cooling.

10.
Nat Commun ; 5: 5731, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25534540

ABSTRACT

The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism, which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.

11.
Phys Rev Lett ; 113(21): 217203, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25479519

ABSTRACT

SmFeO3 has attracted considerable attention very recently due to its reported multiferroic properties above room temperature. We have performed powder and single crystal neutron diffraction as well as complementary polarization dependent soft X-ray absorption spectroscopy measurements on floating-zone grown SmFeO3 single crystals in order to determine its magnetic structure. We found a k=0 G-type collinear antiferromagnetic structure that is not compatible with inverse Dzyaloshinskii-Moriya interaction driven ferroelectricity. While the structural data reveal a clear sign for magneto-elastic coupling at the Néel-temperature of ∼675 K, the dielectric measurements remain silent as far as ferroelectricity is concerned.

12.
Phys Rev Lett ; 111(22): 227201, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24329467

ABSTRACT

All-electrical control of a dynamic magnetoelectric effect is demonstrated in a classical multiferroic manganite DyMnO3, a material containing coupled antiferromagnetic and ferroelectric orders. Because of intrinsic magnetoelectric coupling with electromagnons a linearly polarized terahertz light rotates upon passing through the sample. The amplitude and the direction of the polarization rotation are defined by the orientation of ferroelectric domains and can be switched by static voltage. These experiments allow the terahertz polarization to be tuned using the dynamic magnetoelectric effect.

13.
Nat Commun ; 4: 2449, 2013.
Article in English | MEDLINE | ID: mdl-24048465

ABSTRACT

An hour-glass-shaped magnetic excitation spectrum appears to be a universal characteristic of the high-temperature superconducting cuprates. Fluctuating charge stripes or alternative band structure approaches are able to explain the origin of these spectra. Recently, an hour-glass spectrum has been observed in an insulating cobaltate, thus favouring the charge stripe scenario. Here we show that neither charge stripes nor band structure effects are responsible for the hour-glass dispersion in a cobaltate within the checkerboard charge-ordered regime of La(2-x)Sr(x)CoO(4). The search for charge stripe ordering reflections yields no evidence for charge stripes in La(1.6)Sr(0.4)CoO(4), which is supported by our phonon studies. With the observation of an hour-glass-shaped excitation spectrum in this stripeless insulating cobaltate, we provide experimental evidence that the hour-glass spectrum is neither necessarily connected to charge stripes nor to band structure effects, but instead, probably intimately coupled to frustration and arising chiral or non-collinear magnetic correlations.

14.
Nat Commun ; 3: 1023, 2012.
Article in English | MEDLINE | ID: mdl-22929780

ABSTRACT

A collective order of spin and charge degrees of freedom into stripes has been predicted to be a possible ground state of hole-doped CuO(2) planes, which are the building blocks of high-temperature superconductors. In fact, stripe-like spin and charge order has been observed in various layered cuprate systems. For the prototypical high-temperature superconductor La(2-x)Sr(x)CuO(4), no charge-stripe signal has been found so far, but several indications for a proximity to their formation. Here we report the observation of a pronounced charge-stripe signal in the near surface region of 12-percent doped La(2-x)Sr(x)CuO(4). We conclude that this compound is sufficiently close to charge stripe formation that small perturbations or reduced dimensionality near the surface can stabilize this order. Our finding of different phases in the bulk and near the surface of La(2-x)Sr(x)CuO(4) should be relevant for the interpretation of data from surface-sensitive probes, which are widely used for La(2-x)Sr(x)CuO(4) and similar systems.

15.
Phys Rev Lett ; 108(11): 117001, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22540499

ABSTRACT

Magnetic correlations in superconducting LiFeAs were studied by elastic and by inelastic neutron-scattering experiments. There is no indication for static magnetic ordering, but inelastic correlations appear at the incommensurate wave vector (0.5±Î´,0.5-/+δ,0) with δ~0.07 slightly shifted from the commensurate ordering observed in other FeAs-based compounds. The incommensurate magnetic excitations respond to the opening of the superconducting gap by a transfer of spectral weight.

16.
Phys Rev Lett ; 107(2): 027201, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21797634

ABSTRACT

The metal-insulator transition occurring in hollandite K2V8O16 has been studied by means of neutron and x-ray diffraction as well as by thermodynamic and electron-spin resonance measurements. The complete analysis of the crystal structure in the distorted phase allows us to identify dimerization as the main distortion element in insulating K2V8O16. At low-temperature, half of the V chains are dimerized perfectly explaining the suppression of magnetic susceptibility due to the formation of spin singlets. The dimerization is accompanied by the segregation of charges into chains.

17.
Phys Rev Lett ; 101(16): 167204, 2008 Oct 17.
Article in English | MEDLINE | ID: mdl-18999709

ABSTRACT

Combining infrared reflectivity, transport, susceptibility, and several diffraction techniques, we find compelling evidence that CaCrO3 is a rare case of a metallic and antiferromagnetic transition-metal oxide with a three-dimensional electronic structure. Local spin density approximation calculations correctly describe the metallic behavior as well as the anisotropic magnetic ordering pattern of C type: The high Cr valence state induces via sizable pd hybridization remarkably strong next-nearest-neighbor interactions stabilizing this ordering. The subtle balance of magnetic interactions gives rise to magnetoelastic coupling, explaining pronounced structural anomalies observed at the magnetic ordering transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...