Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
2.
Autoimmun Rev ; 22(11): 103452, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37742748

ABSTRACT

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a devastating disease affecting millions of people worldwide. Due to the 2019 pandemic of coronavirus disease (COVID-19), we are facing a significant increase of ME/CFS prevalence. On May 11th to 12th, 2023, the second international ME/CFS conference of the Charité Fatigue Center was held in Berlin, Germany, focusing on pathomechanisms, diagnosis, and treatment. During the two-day conference, more than 100 researchers from various research fields met on-site and over 700 attendees participated online to discuss the state of the art and novel findings in this field. Key topics from the conference included: the role of the immune system, dysfunction of endothelial and autonomic nervous system, and viral reactivation. Furthermore, there were presentations on innovative diagnostic measures and assessments for this complex disease, cutting-edge treatment approaches, and clinical studies. Despite the increased public attention due to the COVID-19 pandemic, the subsequent rise of Long COVID-19 cases, and the rise of funding opportunities to unravel the pathomechanisms underlying ME/CFS, this severe disease remains highly underresearched. Future adequately funded research efforts are needed to further explore the disease etiology and to identify diagnostic markers and targeted therapies.


Subject(s)
Fatigue Syndrome, Chronic , Humans , Fatigue Syndrome, Chronic/diagnosis , Fatigue Syndrome, Chronic/epidemiology , Fatigue Syndrome, Chronic/therapy , Pandemics , Post-Acute COVID-19 Syndrome , Prevalence
3.
Front Med (Lausanne) ; 10: 1187163, 2023.
Article in English | MEDLINE | ID: mdl-37342500

ABSTRACT

Some patients remain unwell for months after "recovering" from acute COVID-19. They develop persistent fatigue, cognitive problems, headaches, disrupted sleep, myalgias and arthralgias, post-exertional malaise, orthostatic intolerance and other symptoms that greatly interfere with their ability to function and that can leave some people housebound and disabled. The illness (Long COVID) is similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as well as to persisting illnesses that can follow a wide variety of other infectious agents and following major traumatic injury. Together, these illnesses are projected to cost the U.S. trillions of dollars. In this review, we first compare the symptoms of ME/CFS and Long COVID, noting the considerable similarities and the few differences. We then compare in extensive detail the underlying pathophysiology of these two conditions, focusing on abnormalities of the central and autonomic nervous system, lungs, heart, vasculature, immune system, gut microbiome, energy metabolism and redox balance. This comparison highlights how strong the evidence is for each abnormality, in each illness, and helps to set priorities for future investigation. The review provides a current road map to the extensive literature on the underlying biology of both illnesses.

4.
Sleep ; 46(9)2023 09 08.
Article in English | MEDLINE | ID: mdl-37224457

ABSTRACT

A workshop titled "Beyond the Symptom: The Biology of Fatigue" was held virtually September 27-28, 2021. It was jointly organized by the Sleep Research Society and the Neurobiology of Fatigue Working Group of the NIH Blueprint Neuroscience Research Program. For access to the presentations and video recordings, see: https://neuroscienceblueprint.nih.gov/about/event/beyond-symptom-biology-fatigue. The goals of this workshop were to bring together clinicians and scientists who use a variety of research approaches to understand fatigue in multiple conditions and to identify key gaps in our understanding of the biology of fatigue. This workshop summary distills key issues discussed in this workshop and provides a list of promising directions for future research on this topic. We do not attempt to provide a comprehensive review of the state of our understanding of fatigue, nor to provide a comprehensive reprise of the many excellent presentations. Rather, our goal is to highlight key advances and to focus on questions and future approaches to answering them.


Subject(s)
Fatigue , Motivation , Humans , Biology
5.
Sci Rep ; 13(1): 2469, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774379

ABSTRACT

Fatigue is a common reason that patients seek medical care. Only a fraction of these patients meet criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). To determine if ME/CFS is just a more extreme form of fatigue, or a qualitatively different condition, we assessed whether risk factors for ME/CFS and for Severe Fatigue were similar. An email questionnaire that inquired about symptoms of Severe Fatigue and ME/CFS was completed by 41,802 US female nurses from whom detailed medical and lifestyle information had been collected since 1989: 102 met criteria for ME/CFS, 522 had Severe Fatigue, and 41,178 individuals were without significant chronic fatigue. We used Cox proportional hazards regression to estimate the Hazard Ratio (HR) of Severe Fatigue and of ME/CFS with each of several potential risk factors, according to the level of exposure to each risk factor. The risk of Severe Fatigue was significantly increased among participants who were older, had a higher BMI in adulthood, used hormone therapy, had increased alcohol intake and decreased caffeine intake. In contrast, these risk factor associations were not seen in people with ME/CFS. A self-reported past history of acute infectious mononucleosis was associated with a non-significantly increased Hazard Ratio of later ME/CFS (HR 1.77, 0.87-3.61) and, to a lesser extent, of Severe Fatigue (HR 1.28, 0.98-1.66). The different contribution of various risk factors to Severe Fatigue and ME/CFS suggests that ME/CFS has a qualitatively different underlying biology from the more common state of Severe Fatigue.


Subject(s)
Fatigue Syndrome, Chronic , Humans , Female , Fatigue Syndrome, Chronic/diagnosis , Fatigue Syndrome, Chronic/epidemiology , Fatigue Syndrome, Chronic/etiology , Surveys and Questionnaires , Self Report , Risk Factors , Life Style
6.
Cell Host Microbe ; 31(2): 288-304.e8, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36758522

ABSTRACT

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by unexplained debilitating fatigue, cognitive dysfunction, gastrointestinal disturbances, and orthostatic intolerance. Here, we report a multi-omic analysis of a geographically diverse cohort of 106 cases and 91 healthy controls that revealed differences in gut microbiome diversity, abundances, functional pathways, and interactions. Faecalibacterium prausnitzii and Eubacterium rectale, which are both recognized as abundant, health-promoting butyrate producers in the human gut, were reduced in ME/CFS. Functional metagenomics, qPCR, and metabolomics of fecal short-chain fatty acids confirmed a deficient microbial capacity for butyrate synthesis. Microbiome-based machine learning classifier models were robust to geographic variation and generalizable in a validation cohort. The abundance of Faecalibacterium prausnitzii was inversely associated with fatigue severity. These findings demonstrate the functional nature of gut dysbiosis and the underlying microbial network disturbance in ME/CFS, providing possible targets for disease classification and therapeutic trials.


Subject(s)
Fatigue Syndrome, Chronic , Gastrointestinal Microbiome , Humans , Fatigue Syndrome, Chronic/metabolism , Fatigue Syndrome, Chronic/microbiology , Butyrates , Bacteria/genetics , Metabolomics
7.
Front Med (Lausanne) ; 9: 917019, 2022.
Article in English | MEDLINE | ID: mdl-35847821

ABSTRACT

Background: Some patients with acute COVID-19 are left with persistent, debilitating fatigue, cognitive impairment ("brain fog"), orthostatic intolerance (OI) and other symptoms ("Long COVID"). Many of the symptoms are like those of other post-infectious fatigue syndromes and may meet criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Common diagnostic laboratory tests are often unrevealing. Methods: We evaluated whether a simple, standardized, office-based test of OI, the 10-min NASA Lean Test (NLT), would aggravate symptoms and produce objective hemodynamic and cognitive abnormalities, the latter being evaluated by a simple smart phone-based app. Participants: People with Long COVID (N = 42), ME/CFS (N = 26) and healthy control subjects (N = 20) were studied just before, during, immediately after, 2 and 7 days following completion of the NLT. Results: The NLT provoked a worsening of symptoms in the two patient groups but not in healthy control subjects, and the severity of all symptoms was similar and significantly worse in the two patient groups than in the control subjects (p < 0.001). In the two patient groups, particularly those with Long COVID, the NLT provoked a marked and progressive narrowing in the pulse pressure. All three cognitive measures of reaction time worsened in the two patient groups immediately following the NLT, compared to the healthy control subjects, particularly in the Procedural Reaction Time (p < 0.01). Conclusions: A test of orthostatic stress easily performed in an office setting reveals different symptomatic, hemodynamic and cognitive abnormalities in people with Long COVID and ME/CFS, compared to healthy control subjects. Thus, an orthostatic challenge easily performed in an office setting, and the use of a smart phone app to assess cognition, can provide objective confirmation of the orthostatic intolerance and brain fog reported by patients with Long COVID and ME/CFS.

8.
Int J Mol Sci ; 23(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35887252

ABSTRACT

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease characterized by unexplained physical fatigue, cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. People with ME/CFS often report a prodrome consistent with infections. Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of plasma from 106 ME/CFS cases and 91 frequency-matched healthy controls. Subjects in the ME/CFS group had significantly decreased levels of plasmalogens and phospholipid ethers (p < 0.001), phosphatidylcholines (p < 0.001) and sphingomyelins (p < 0.001), and elevated levels of dicarboxylic acids (p = 0.013). Using machine learning algorithms, we were able to differentiate ME/CFS or subgroups of ME/CFS from controls with area under the receiver operating characteristic curve (AUC) values up to 0.873. Our findings provide the first metabolomic evidence of peroxisomal dysfunction, and are consistent with dysregulation of lipid remodeling and the tricarboxylic acid cycle. These findings, if validated in other cohorts, could provide new insights into the pathogenesis of ME/CFS and highlight the potential use of the plasma metabolome as a source of biomarkers for the disease.


Subject(s)
Fatigue Syndrome, Chronic , Bayes Theorem , Biomarkers , Case-Control Studies , Humans , Metabolomics
9.
medRxiv ; 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35043127

ABSTRACT

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease that is characterized by unexplained physical fatigue unrelieved by rest. Symptoms also include cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. A syndrome clinically similar to ME/CFS has been reported following well-documented infections with the coronaviruses SARS-CoV and MERS-CoV. At least 10% of COVID-19 survivors develop post acute sequelae of SARS-CoV-2 infection (PASC). Although many individuals with PASC have evidence of structural organ damage, a subset have symptoms consistent with ME/CFS including fatigue, post exertional malaise, cognitive dysfunction, gastrointestinal disturbances, and postural orthostatic intolerance. These common features in ME/CFS and PASC suggest that insights into the pathogenesis of either may enrich our understanding of both syndromes, and could expedite the development of strategies for identifying those at risk and interventions that prevent or mitigate disease. METHODS: Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of 888 metabolic analytes in plasma samples of 106 ME/CFS cases and 91 frequency-matched healthy controls. RESULTS: In ME/CFS cases, regression, Bayesian and enrichment analyses revealed evidence of peroxisomal dysfunction with decreased levels of plasmalogens. Other findings included decreased levels of several membrane lipids, including phosphatidylcholines and sphingomyelins, that may indicate dysregulation of the cytidine-5’-diphosphocholine pathway. Enrichment analyses revealed decreased levels of choline, ceramides and carnitines, and increased levels of long chain triglycerides (TG) and hydroxy-eicosapentaenoic acid. Elevated levels of dicarboxylic acids were consistent with abnormalities in the tricarboxylic acid cycle. Using machine learning algorithms with selected metabolites as predictors, we were able to differentiate female ME/CFS cases from female controls (highest AUC=0.794) and ME/CFS cases without self-reported irritable bowel syndrome (sr-IBS) from controls without sr-IBS (highest AUC=0.873). CONCLUSION: Our findings are consistent with earlier ME/CFS work indicating compromised energy metabolism and redox imbalance, and highlight new abnormalities that may provide insights into the pathogenesis of ME/CFS. ONE SENTENCE SUMMARY: Plasma levels of plasmalogens are decreased in patients with myalgic encephalomyelitis/chronic fatigue syndrome suggesting peroxisome dysfunction.

11.
Healthcare (Basel) ; 9(7)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34356297

ABSTRACT

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an illness defined predominantly by symptoms. Routine laboratory test results often are normal, raising the question of whether there are any underlying objective abnormalities. In the past 20 years, however, new research technologies have uncovered a series of biological abnormalities in people with ME/CFS. Unfortunately, many physicians remain unaware of this, and some tell patients that "there is nothing wrong" with them. This skepticism delegitimizes, and thereby multiplies, the patients' suffering.

12.
Mayo Clin Proc ; 96(11): 2861-2878, 2021 11.
Article in English | MEDLINE | ID: mdl-34454716

ABSTRACT

Despite myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) affecting millions of people worldwide, many clinicians lack the knowledge to appropriately diagnose or manage ME/CFS. Unfortunately, clinical guidance has been scarce, obsolete, or potentially harmful. Consequently, up to 91% of patients in the United States remain undiagnosed, and those diagnosed often receive inappropriate treatment. These problems are of increasing importance because after acute COVID-19, a significant percentage of people remain ill for many months with an illness similar to ME/CFS. In 2015, the US National Academy of Medicine published new evidence-based clinical diagnostic criteria that have been adopted by the US Centers for Disease Control and Prevention. Furthermore, the United States and other governments as well as major health care organizations have recently withdrawn graded exercise and cognitive-behavioral therapy as the treatment of choice for patients with ME/CFS. Recently, 21 clinicians specializing in ME/CFS convened to discuss best clinical practices for adults affected by ME/CFS. This article summarizes their top recommendations for generalist and specialist health care providers based on recent scientific progress and decades of clinical experience. There are many steps that clinicians can take to improve the health, function, and quality of life of those with ME/CFS, including those in whom ME/CFS develops after COVID-19. Patients with a lingering illness that follows acute COVID-19 who do not fully meet criteria for ME/CFS may also benefit from these approaches.


Subject(s)
Family Practice/standards , Fatigue Syndrome, Chronic/therapy , Physician-Patient Relations , Adult , Attitude of Health Personnel , COVID-19/epidemiology , Fatigue Syndrome, Chronic/diagnosis , Humans , Practice Patterns, Physicians'
13.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34400495

ABSTRACT

Although most patients recover from acute COVID-19, some experience postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection (PASC). One subgroup of PASC is a syndrome called "long COVID-19," reminiscent of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS is a debilitating condition, often triggered by viral and bacterial infections, leading to years-long debilitating symptoms including profound fatigue, postexertional malaise, unrefreshing sleep, cognitive deficits, and orthostatic intolerance. Some are skeptical that either ME/CFS or long COVID-19 involves underlying biological abnormalities. However, in this review, we summarize the evidence that people with acute COVID-19 and with ME/CFS have biological abnormalities including redox imbalance, systemic inflammation and neuroinflammation, an impaired ability to generate adenosine triphosphate, and a general hypometabolic state. These phenomena have not yet been well studied in people with long COVID-19, and each of them has been reported in other diseases as well, particularly neurological diseases. We also examine the bidirectional relationship between redox imbalance, inflammation, energy metabolic deficits, and a hypometabolic state. We speculate as to what may be causing these abnormalities. Thus, understanding the molecular underpinnings of both PASC and ME/CFS may lead to the development of novel therapeutics.


Subject(s)
COVID-19/metabolism , Encephalomyelitis/metabolism , Fatigue Syndrome, Chronic/metabolism , Animals , COVID-19/complications , COVID-19/etiology , COVID-19/immunology , Encephalomyelitis/immunology , Fatigue Syndrome, Chronic/immunology , Humans , Oxidation-Reduction , Post-Acute COVID-19 Syndrome
14.
Trends Mol Med ; 27(9): 895-906, 2021 09.
Article in English | MEDLINE | ID: mdl-34175230

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause chronic and acute disease. Postacute sequelae of SARS-CoV-2 infection (PASC) include injury to the lungs, heart, kidneys, and brain that may produce a variety of symptoms. PASC also includes a post-coronavirus disease 2019 (COVID-19) syndrome ('long COVID') with features that can follow other acute infectious diseases and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Here we summarize what is known about the pathogenesis of ME/CFS and of 'acute' COVID-19, and we speculate that the pathogenesis of post-COVID-19 syndrome in some people may be similar to that of ME/CFS. We propose molecular mechanisms that might explain the fatigue and related symptoms in both illnesses, and we suggest a research agenda for both ME/CFS and post-COVID-19 syndrome.


Subject(s)
COVID-19/complications , Fatigue Syndrome, Chronic/etiology , COVID-19/etiology , COVID-19/physiopathology , Energy Metabolism , Fatigue Syndrome, Chronic/physiopathology , Gastrointestinal Microbiome , Humans , Nervous System/physiopathology , Post-Acute COVID-19 Syndrome
16.
Front Immunol ; 12: 648945, 2021.
Article in English | MEDLINE | ID: mdl-33841432

ABSTRACT

Human herpesviruses 6A (HHV-6A) and human herpesvirus 6B (HHV-6B)-collectively, HHV-6A/B-are recently-discovered but ancient human viruses. The vast majority of people acquire one or both viruses, typically very early in life, producing an ineradicable lifelong infection. The viruses have been linked to several neurological, pulmonary and hematological diseases. In early human history, the viruses on multiple occasions infected a germ cell, and integrated their DNA into a human chromosome. As a result, about 1% of humans are born with the full viral genome present in every cell, with uncertain consequences for health. HHV-6A may play a role in 43% of cases of primary unexplained infertility. Both the inherited and acquired viruses may occasionally trigger several of the factors that are important in the pathogenesis of preeclampsia. Transplacental infection occurs in 1-2% of pregnancies, with some evidence suggesting adverse health consequences for the child. While emerging knowledge about these viruses in reproductive diseases is not sufficient to suggest any changes in current practice, we write this review to indicate the need for further research that could prove practice-changing.


Subject(s)
Abortion, Spontaneous/immunology , Fetal Growth Retardation/immunology , Herpesvirus 6, Human/immunology , Roseolovirus Infections/immunology , Virus Integration/immunology , Virus Replication/immunology , Abortion, Spontaneous/virology , Cervix Uteri/cytology , Cervix Uteri/immunology , Cervix Uteri/virology , Female , Fetal Growth Retardation/virology , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/physiology , Humans , Placenta/cytology , Placenta/immunology , Placenta/virology , Pregnancy , Roseolovirus Infections/virology , Virus Integration/genetics , Virus Replication/genetics
17.
Clin Microbiol Rev ; 34(1)2020 12 16.
Article in English | MEDLINE | ID: mdl-33177186

ABSTRACT

Human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B), collectively termed HHV-6A/B, are neurotropic viruses that permanently infect most humans from an early age. Although most people infected with these viruses appear to suffer no ill effects, the viruses are a well-established cause of encephalitis in immunocompromised patients. In this review, we summarize the evidence that the viruses may also be one trigger for febrile seizures (including febrile status epilepticus) in immunocompetent infants and children, mesial temporal lobe epilepsy, multiple sclerosis (MS), and, possibly, Alzheimer's disease. We propose criteria for linking ubiquitous infectious agents capable of producing lifelong infection to any neurologic disease, and then we examine to what extent these criteria have been met for these viruses and these diseases.


Subject(s)
Herpesvirus 6, Human/pathogenicity , Immunocompromised Host , Roseolovirus Infections/diagnosis , Brain Diseases , Child , Encephalitis, Viral/virology , Epilepsy, Temporal Lobe/virology , Humans , Infant , Multiple Sclerosis/virology , Seizures, Febrile/virology
18.
PLoS One ; 15(7): e0236148, 2020.
Article in English | MEDLINE | ID: mdl-32692761

ABSTRACT

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an unexplained chronic, debilitating illness characterized by fatigue, sleep disturbances, cognitive dysfunction, orthostatic intolerance and gastrointestinal problems. Using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we analyzed the plasma proteomes of 39 ME/CFS patients and 41 healthy controls. Logistic regression models, with both linear and quadratic terms of the protein levels as independent variables, revealed a significant association between ME/CFS and the immunoglobulin heavy variable (IGHV) region 3-23/30. Stratifying the ME/CFS group based on self-reported irritable bowel syndrome (sr-IBS) status revealed a significant quadratic effect of immunoglobulin lambda constant region 7 on its association with ME/CFS with sr-IBS whilst IGHV3-23/30 and immunoglobulin kappa variable region 3-11 were significantly associated with ME/CFS without sr-IBS. In addition, we were able to predict ME/CFS status with a high degree of accuracy (AUC = 0.774-0.838) using a panel of proteins selected by 3 different machine learning algorithms: Lasso, Random Forests, and XGBoost. These algorithms also identified proteomic profiles that predicted the status of ME/CFS patients with sr-IBS (AUC = 0.806-0.846) and ME/CFS without sr-IBS (AUC = 0.754-0.780). Our findings are consistent with a significant association of ME/CFS with immune dysregulation and highlight the potential use of the plasma proteome as a source of biomarkers for disease.


Subject(s)
B-Lymphocytes/immunology , Biomarkers/blood , Fatigue Syndrome, Chronic/blood , Fatigue Syndrome, Chronic/immunology , Proteome/analysis , B-Lymphocytes/pathology , Case-Control Studies , Fatigue Syndrome, Chronic/pathology , Female , Humans , Male , Middle Aged , Prognosis , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...