Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Inform ; 4(1): 1-12, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27747821

ABSTRACT

Widely spread naming inconsistencies in neuroscience pose a vexing obstacle to effective communication within and across areas of expertise. This problem is particularly acute when identifying neuron types and their properties. Hippocampome.org is a web-accessible neuroinformatics resource that organizes existing data about essential properties of all known neuron types in the rodent hippocampal formation. Hippocampome.org links evidence supporting the assignment of a property to a type with direct pointers to quotes and figures. Mining this knowledge from peer-reviewed reports reveals the troubling extent of terminological ambiguity and undefined terms. Examples span simple cases of using multiple synonyms and acronyms for the same molecular biomarkers (or other property) to more complex cases of neuronal naming. New publications often use different terms without mapping them to previous terms. As a result, neurons of the same type are assigned disparate names, while neurons of different types are bestowed the same name. Furthermore, non-unique properties are frequently used as names, and several neuron types are not named at all. In order to alleviate this nomenclature confusion regarding hippocampal neuron types and properties, we introduce a new functionality of Hippocampome.org: a fully searchable, curated catalog of human and machine-readable definitions, each linked to the corresponding neuron and property terms. Furthermore, we extend our robust approach to providing each neuron type with an informative name and unique identifier by mapping all encountered synonyms and homonyms.

2.
J Theor Biol ; 183(2): 219-30, 1996 Nov 21.
Article in English | MEDLINE | ID: mdl-8977879

ABSTRACT

Chaotic regimes in a mathematical model of pacemaker activity in the bursting neurons of a snail Helix pomatia, have been investigated. The model includes a slow-wave generating mechanism, a spike-generating mechanism, an inward Ca current, intracellular Ca ions, [Ca2+]in, their fast buffering and uptake by intracellular Ca stores, and a [Ca2+]in-inhibited Ca current. Chemosensitive voltage-activated conductance, gB*, responsible for termination of the spike burst, and chemosensitive sodium conductance, gNa*, responsible for the depolarization phase of the slow-wave, were used as control parameters. These conductances in intact snail bursting neuron are regulated by neuropeptides. Time courses of the membrane potential and [Ca2+]in were employed to analyse different regimes in the model. Histograms of interspike intervals, autocorrelograms, spectral characteristics, one-dimensional return maps, phase plane trajectories, positive Lyapunov exponent and especially cascades of period-doubling bifurcations demonstrate that approaches to chaos were generated. The bifurcation diagram as a function of gB* and the ([Ca2+]in-V) phase diagram of initial conditions reveal fractal features. It has been observed that a short-lasting depolarizing current of elevation of [Ca2+]in may evoke transformation of chaotic activity into a regular bursting one. These kinds of transitions do not require any changes in the parameters of the model. The results demonstrate that chaotic regimes of neuronal activity modulated by neuropeptides may play a relevant role in information processing and storage at the level of a single neuron.


Subject(s)
Helix, Snails/physiology , Membrane Potentials/physiology , Models, Neurological , Neural Conduction , Neurons/physiology , Animals , Calcium/physiology , Neuropeptides/physiology , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...