Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Acta Physiol (Oxf) ; 235(2): e13821, 2022 06.
Article in English | MEDLINE | ID: mdl-35403817

ABSTRACT

AIM: The specificity of muscle-tendon and foot architecture of elite Kenyan middle- and long-distance runners has been found to contribute to their superior running performance. To investigate the respective influence of genetic endowment and training on these characteristics, we compared leg and foot segmental lengths as well as muscle-tendon architecture of Kenyans and Japanese males (i) from infancy to adulthood and (ii) non-athletes versus elite runners. METHODS: The 676 participants were divided according to their nationality (Kenyans and Japanese), age (nine different age groups for non-athletes) and performance level in middle- and long-distance races (non-athlete, non-elite and elite adult runners). Shank and Achilles tendon (AT) lengths, medial gastrocnemius (MG) fascicle length, pennation angle and muscle thickness, AT moment arm (MAAT ), and foot lever ratio were measured. RESULTS: Above 8 years old, Kenyans had a longer shank and AT, shorter fascicle, greater pennation angle, thinner MG muscle as well as longer MAAT , with lower foot lever ratio than age-matched Japanese. Among adults of different performance levels and independently of the performance level, Kenyans had longer shank, AT and MAAT , thinner MG muscle thickness, and lower foot lever ratio than Japanese. The decrease in MG fascicle length and increase pennation angle observed for the adult Japanese with the increase in performance level resulted in a lack of difference between elite Kenyans and Japanese. CONCLUSION: The specificity of muscle-tendon and foot architecture of elite Kenyan runners could result from genetic endowment and contribute to the dominance of Kenyans in middle- and long-distance races.


Subject(s)
Achilles Tendon , Financial Management , Adult , Child , Humans , Japan , Kenya , Male , Muscle, Skeletal/physiology
2.
Front Physiol ; 10: 1153, 2019.
Article in English | MEDLINE | ID: mdl-31572208

ABSTRACT

Without high impact forces, it is not clear how humans can utilize tendon elasticity during low-impact activities. The purpose of the present study was to examine the muscle-tendon behavior together with the electromyographic (EMG) activities of the vastus lateralis (VL) muscle during the human dolphin-kicking. In a swimming pool, each subject (n = 11) swam the 25 m dolphin-kicking at two different speeds (NORMAL and FAST). Surface EMGs were recorded from the VL and biceps femoris (BF) muscles. Simultaneous recordings of the knee joint angle by electro-goniometer and of the VL fascicle length by ultrasonography were used to calculate the muscle-tendon unit and tendinous length of VL (LMTU and LTT, respectively). In the dolphin-kicking, the stretching and shortening amplitudes of VL LMTU did not differ significantly between the two kicking speed conditions. However, both stretching and shortening amplitudes of the VL fascicle length were lower at FAST than at NORMAL speed whereas the opposite was found for the VL LTT values. At FAST, the contribution of the VL tendinous length to the entire VLMTU length changes increased. The EMG analysis revealed at FAST higher agonist VL activation from the late up-beat (MTU stretching) to the early down-beat phases as well as increased muscle co-activation of VL and BF muscles from the late down-beat to early up-beat phases of dolphin-kicking. These results suggest that at increasing kicking speeds, the VL fascicles and tendinous tissues during aquatic movements can utilize tendon elasticity in a similar way than in terrestrial forms of locomotion. However, these activation profiles of VL and BF muscles may differ from their activation pattern in terrestrial locomotion.

3.
Sports Med ; 47(6): 1221-1230, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27699696

ABSTRACT

BACKGROUND: Patients who have had an Achilles tendon (AT) rupture repaired are potentially at higher risk for re-rupture than those without previous rupture. Little attention has been given to the neuromechanical modulation of muscle-tendon interaction and muscle activation profiles during human dynamic movements after AT rupture repair. OBJECTIVE: The purpose of this study was to examine muscle-tendon behavior and muscle activation during bilateral hopping. METHODS: We enrolled nine subjects who had undergone surgical repair of unilateral AT rupture within the past 1-2 years. Subjects performed bilateral hopping while we took ultrasound, kinematic, and electromyogram recordings and measurements. AT behaviors were also recorded. We then compared responses between values obtained from the ruptured AT leg (LEGATR) and non-ruptured AT leg (LEGNOR). RESULTS: During hopping, the AT stretching amplitudes were greater in the LEGATR than in the LEGNOR, although the peak AT force and stiffness were smaller in the LEGATR than in the LEGNOR. The AT negative mechanical work did not show any significant differences between both legs. However, positive works were significantly lower in the LEGATR than in the LEGNOR. Electromyogram patterns in both soleus and tibialis anterior muscles clearly differed after ground contact for the LEGATR and the LEGNOR. CONCLUSIONS: These results suggest that the repaired ruptured AT can be compliant and have insufficient Young's modulus, which can influence mechanical responses in muscle activities. The modulation of agonist-antagonist muscle activities corresponding to the different levels of stiffness between the LEGATR and the LEGNOR may not be fully functioning during the pre-activation phase.


Subject(s)
Achilles Tendon/injuries , Achilles Tendon/surgery , Muscle Contraction/physiology , Muscle, Skeletal/physiopathology , Tendon Injuries/surgery , Achilles Tendon/physiopathology , Electromyography , Humans , Range of Motion, Articular , Recovery of Function , Rupture , Tendon Injuries/rehabilitation , Treatment Outcome
4.
Eur J Appl Physiol ; 115(5): 863-77, 2015 May.
Article in English | MEDLINE | ID: mdl-25479729

ABSTRACT

PURPOSE: The present study examined the effects of repetitive hopping training on muscle activation profiles and fascicle-tendon interaction in the elderly. METHODS: 20 physically active elderly men were randomly assigned for training (TG) and control groups (CG). TG performed supervised bilateral short contact hopping training with progressively increasing training volume. Measurements were performed before the training period (BEF) as well as after 2 weeks (2 W) and 11 weeks (11 W) of training. During measurements, the gastrocnemius medialis-muscle (GaM) fascicle and its outer Achilles tendon length changes during hopping were examined by ultrasonography together with electromyographic (EMG) activities of calf muscles, kinematics, and kinetics. RESULTS: At 2 W, the ankle joint stiffness was increased by 21.0 ± 19.3 % and contact time decreased by 9.4 ± 7.8 % in TG. Thereafter, from 2-11 W the jumping height increased 56.2 ± 18.1 % in TG. Simultaneously, tendon forces increased 24.3 ± 19.0 % but tendon stiffness did not change. GaM fascicles shifted to shorter operating lengths after training without any changes in their length modifications during the contact phase of hopping. Normalized EMG amplitudes during hopping did not change with training. CONCLUSIONS: The present study shows that 11 W of hopping training improves the performance of physically active elderly men. This improvement is achieved with shorter GaM operating lengths and, therefore, increased fascicle stiffness and improved tendon utilization after training. Based on these results, hopping training could be recommended for healthy fit elderly to retain and improve rapid force production capacity.


Subject(s)
Achilles Tendon/physiology , Ankle Joint/physiology , Exercise/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Aged , Biomechanical Phenomena/physiology , Electromyography , Humans , Male
5.
Eur J Appl Physiol ; 115(4): 849-59, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25476746

ABSTRACT

PURPOSE: Leg muscle activation profiles and muscle-tendon interaction were studied with eleven internationally high-level Kenyan and eleven national level Japanese distance runners. METHODS: Ultrasonography and kinematics were applied together with surface electromyography (EMG) recordings of leg muscles when subjects ran on treadmill at 9.0 (SLOW) and 13.9 km h(-1) (MEDIUM). RESULTS: At each speed, both groups presented similar contact and flight times. The kinematic and ultrasound analyses revealed that, in contrast to the Japanese runners, the Kenyans demonstrated during contact smaller stretching and shortening amplitudes (p < 0.01) of the tendinous tissue of medial gastrocnemius (MG), but greater tendon contribution to the muscle-tendon unit shortening (p < 0.05). The MG fascicles of the Kenyans were shorter not only at the resting standing position, but also during the contact phase at both running speeds (p < 0.01). The EMG profiles of the Kenyans showed lower braking/preactivation ratio in both MG and tibialis anterior (p < 0.05) muscles. They were also characterized by negative relationships between the Achilles tendon moment arm and the MG fascicle shortening during contact (r = -0.54, p < 0.01). In contrast, the Japanese presented the classical stretch-shortening cycle muscle activation profile of relatively high MG EMG activity during the braking phase. CONCLUSION: These findings provide new suggestions that the Kenyans have unique structural characteristics which can result in the reduction of muscle and tendinous stretch-shortening loading together with smaller muscle activation during contact at submaximal running speed.


Subject(s)
Athletic Performance , Black People , Muscle, Skeletal/physiology , Running/physiology , Tendons/physiology , Adolescent , Asian People , Athletes , Humans , Leg/physiology , Male , Muscle Contraction , Muscle, Skeletal/anatomy & histology , Physical Endurance , Tendons/anatomy & histology , Young Adult
6.
Front Hum Neurosci ; 8: 773, 2014.
Article in English | MEDLINE | ID: mdl-25324763

ABSTRACT

Aging is related to a variety of changes at the muscular level. It seems that the age-related changes in motor unit activation are muscle- and intensity dependent. The purpose of this study was to examine the motor unit discharge rate (MUDR) in both isometric and dynamic contractions of the aging soleus muscle. Eight elderly males participated in the study. The subjects performed isometric and dynamic plantar flexions while seated in an ankle dynamometer. The force levels studied were 10, 20, 40, 60, 80 and 100% of the isometric (ISO) maximal voluntary contractions (MVC) in ISO and 10, 20 and 40% in concentric (CON) and eccentric (ECC) contractions. Soleus intramuscular EMG was recorded with bipolar fine-wire electrodes and decomposed to individual trains of motor unit discharges. In ISO the MUDR increased with each force level from 40 to 100% MVC. In dynamic contractions the descriptive analysis showed a higher MUDR in CON compared to ISO or ECC. The difficulties of recording single motor units in dynamic contractions, especially in the elderly is discussed.

7.
PLoS One ; 8(2): e53425, 2013.
Article in English | MEDLINE | ID: mdl-23405069

ABSTRACT

INTRODUCTION: Understanding the detailed control of human locomotion and balance can be improved, when individual motor units can be isolated and their firing rates followed in natural movement of large, fuctionally important muscles. For this reason the present study investigated the motor unit discharge rate (MUDR) in isometric and dynamic contractions of the soleus muscle. METHODS: Eleven males performed isometric (10-100% MVC) and dynamic (10-40% MVC) plantar flexions. Intramuscular EMG was measured from Soleus with bipolar wire-electrodes and decomposed with custom built "Daisy" software. RESULTS: The Soleus MUDR was significantly higher in concentric compared to isometric or eccentric contractions at all submaximal force levels (P<0.05). In isometric contractions MUDR increased up to 100% MVC. CONCLUSION: Motor unit discharge properties of a large plantarflexor can be measured in dynamic and maximal contractions. For a given torque output, MUDR is dependent upon contraction type, as set by the major mechanical differences between concentric and eccentric actions.


Subject(s)
Isometric Contraction/physiology , Motor Neurons/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Adult , Humans , Male , Torque
8.
Eur J Appl Physiol ; 112(12): 4035-43, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22466309

ABSTRACT

Increasing age can influence the interaction of muscle fascicles and tendon during dynamic movements. The object of the present study was to examine occurrence and possible reasons for the age-specific behavior of fascicles and tendons and their interaction during hopping with different intensities. Nine young and 24 elderly subjects performed repetitive hopping with maximal effort as well as with 50, 65, 75 and 90 % intensities. During hopping joint kinematics and ground reaction, forces were measured together with recordings of ultrasound images of both the fascicle and the muscle-tendon junction part of the gastrocnemius medialis (GaM) muscle. The results showed that fascicle behavior during the braking phase of hopping was clearly age specific in nature with more fascicle shortening in the young (p < 0.001). In addition, the fascicle shortening increased in young subjects with increasing intensity (p < 0.05). At the instant of ground contact, the elderly subjects demonstrated decreased fascicle length with increasing hopping intensity (p < 0.01). Thereafter in the braking phase, the elderly showed much smaller changes in fascicle length as compared to the young. In contrast to the fascicles, the GaM outer tendon did not show major age-specific differences in stretching and shortening amplitudes during hopping although the peak tendon forces were clearly lower in the elderly (p < 0.001). These results suggest that GaM outer tendon behavior is not influenced greatly with increasing age. It is further suggested that when aging modifies the fascicle-tendon interaction, it is primarily due to the age-specific difference in the fascicle level. This notion poses a question that as compared to the young, the elderly individuals may have a different fascicle behavior for optimal SSC locomotion such as hopping.


Subject(s)
Locomotion/physiology , Muscle, Skeletal/physiology , Tendons/physiology , Adult , Age Factors , Aged , Biomechanical Phenomena , Case-Control Studies , Exercise/physiology , Humans , Leg/diagnostic imaging , Leg/physiology , Male , Muscle, Skeletal/diagnostic imaging , Tendons/diagnostic imaging , Ultrasonography
9.
J Electromyogr Kinesiol ; 21(3): 483-91, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21458294

ABSTRACT

It is well documented that increasing effort during exercise is characterized by an increase in electromyographic activity of the relevant muscles. How aging influences this relationship is a matter of great interest. In the present study, nine young and 24 elderly subjects did repetitive hopping with maximal effort as well as with 50%, 65%, 75% and 90% intensities. During hopping joint kinematics were measured together with electromyographic activity (EMG) from the soleus, gastrocnemius medialis, gastrocnemius lateralis and tibialis anterior muscles. The results showed that agonist activation increased in both age groups with increasing intensity. The highest jumping efficiency (EMG ratio of the braking phase to the push off-phase activation) was achieved with moderate hopping intensities (65-75%) in both the young and in the elderly. Age-comparison showed that elderly subjects had high agonist preactivation but thereafter lower activation during the braking phase. Antagonist coactivation was minimal and did not show age- or intensity-specificity. The elderly had more flexed knees at the instant of ground contact. When intensity increased, the elderly also plantarflexed their ankles more before ground contact. Ankle joint stiffness was lower in elderly subjects only in high hopping intensities (90% and Max). These results confirm that age-specific agonist muscle activation profiles exist during hopping even when exercise intensities are matched on the relative scale. The results suggest further that the elderly can adjust their reduced neuromuscular capacity to match the demands set by different exercise intensities.


Subject(s)
Aging/physiology , Ankle Joint/physiology , Locomotion/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Adult , Aged , Aged, 80 and over , Elastic Modulus/physiology , Female , Humans , Male , Middle Aged
10.
Clin Biomech (Bristol, Avon) ; 25(5): 476-82, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20193974

ABSTRACT

BACKGROUND: Diabetes leads to numerous side effects, including an increased density of collagen fibrils and thickening of the Achilles tendon. This may increase tissue stiffness and could affect stretch distribution between muscle and tendinous tissues during walking. The primary aim of this study was to examine stretch distribution between muscle and tendinous tissues in the medial gastrocnemius muscle-tendon unit in long-term diabetes patients and control subjects during walking. METHODS: Achilles tendon length changes were investigated in 13 non-neuropathic diabetes patients and 12 controls, whilst walking at a self selected speed across a 10 m force platform. Electromyographic activity was recorded in the medial gastrocnemius, soleus and tibialis anterior muscles, goniometers were used to detect joint angle changes, and ultrasound was used to estimate tendon length changes. FINDINGS: Achilles tendon length changes were attenuated in diabetes patients compared to controls, and were inversely correlated with diabetes duration (r=-0.628; P<0.05), as was ankle range of motion (r=-0.693; P<0.01). Tendon length changes were also independent of walking speed (r=-0.299; P=0.224) and age (r=0.115; P=0.721) in the diabetic group. INTERPRETATION: Stretch distribution between muscle and tendon during walking is altered in diabetic patients, which could decrease walking efficiency, a factor that may be exacerbated with increasing diabetes duration. Diabetes-induced changes in mechanical tendon properties may be at least partly responsible for attenuated tendon length changes during walking in this patient group.


Subject(s)
Achilles Tendon/physiopathology , Diabetes Mellitus/physiopathology , Walking/physiology , Achilles Tendon/diagnostic imaging , Biomechanical Phenomena , Case-Control Studies , Electromyography , Female , Humans , Male , Middle Aged , Muscle, Skeletal/physiopathology , Statistics, Nonparametric , Torque , Ultrasonography
11.
Bone ; 46(4): 964-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20064632

ABSTRACT

The strong association between body mass and skeletal robusticity has been attributed to increasing skeletal loading with increasing mass. However, it is unclear whether body mass is merely a coarse substitute for bone loading rather than a true independent predictor of bone strength. As indices of neuromuscular performance, impulse and peak power were determined from vertical ground reaction force during a maximal counter movement jump test in 221 premenopausal and 82 postmenopausal women. Bone compressive (BSI(d) g(2)/cm(4)) and bending (SSImax(mid) mm(3)) strength indices were measured with peripheral quantitative computed tomography (pQCT) at the distal ((d)) and midshaft ((mid)) sites of the tibia. A two-step forced regression model for predicting bone strength indices was constructed. Age, height and body mass were entered first, followed by impulse as an indicator of skeletal loading. The basic model explained 14% (P<0.001) of the variance in BSI(d) in the premenopausal group and 16% (P=0.004) in the postmenopausal group, and 32% (P<0.001) and 25% (P<0.001) of the variance in SSImax(nud) respectively. Entering impulse into the model increased the explanatory power by 9% (P<0.001) and 7% (P<0.001) for BSI(d) and by 8% (P<0.001) and 12% (P<0.001) for SSImax(mid). Furthermore, impulse replaced body mass as an independent significant factor explaining the variance in bone strength. These results indicate that neuromuscular performance should be measured and preferred over body mass in models predicting skeletal robusticity.


Subject(s)
Compressive Strength/physiology , Muscle Strength/physiology , Osteoarthritis/physiopathology , Postmenopause/physiology , Premenopause/physiology , Tibia/physiology , Adult , Age Factors , Body Composition/physiology , Body Weight/physiology , Female , Humans , Middle Aged , Movement/physiology , Muscle Contraction/physiology , Osteoarthritis/diagnostic imaging , Physical Exertion/physiology , Radiography , Regression Analysis , Stress, Mechanical , Tibia/diagnostic imaging , Weight-Bearing/physiology
12.
J Electromyogr Kinesiol ; 20(4): 608-18, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20064728

ABSTRACT

The aim of this study was to examine the influence of exercise-induced muscle damage on elbow rhythmic movement (RM) performance and neural activity pattern and to investigate whether this influence is joint angle specific. Ten males performed an exercise of 50 maximal eccentric elbow flexions in isokinetic machine with duty cycle of 1:15. Maximal dynamic and isometric force tests (90 degrees , 110 degrees and 130 degrees elbow angle) and both active and passive stretch reflex tests of elbow flexors were applied to the elbow joint. The intentional RM was performed in the horizontal plane at elbow angles; 60-120 degrees (SA-RM), 80-140 degrees (MA-RM) and 100-160 degrees (LA-RM). All measurements together with the determination of muscle soreness, swelling, passive stiffness, serum creatine kinase were conducted before, immediately and 2h as well as 2 days, 4 days, 6 days and 8 days post-exercise. Repeated maximal eccentric actions modified the RM trajectory symmetry acutely (SA-RM) and delayed (SA/MA/LA-RM) until the entire follow up of 8 days. Acutely lowered MA-RM peak velocity together with reduced activity of biceps brachii (BB) at every RM range, reflected a poorer acceleration and deceleration capacity of elbow flexors. A large acute drop of BB EMG burst amplitude together with parallel decrease in BB active stretch reflex amplitude, especially 2h post-exercise, suggested an inhibitory effect originating most likely from groups III/IV mechano-nociceptors.


Subject(s)
Elbow Joint/physiology , Movement/physiology , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Adult , Creatine Kinase/blood , Electromyography , Humans , Lactic Acid/blood , Male , Reflex, Stretch
13.
J Physiol ; 587(Pt 17): 4339-47, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19622608

ABSTRACT

After repeated passive stretching, tendinous tissue compliance increases in the human soleus (SOL) muscle-tendon unit. During movement, such changes would have important consequences for neural and mechanical stretch responses. This study examined the existence of such effects in response to a 75 min walking intervention. Eleven healthy subjects walked on a treadmill at 4 km h(1) with a robotic stretch device attached to the left leg. Ultrasonography was used to measure SOL fascicle lengths, and surface EMG activity was recorded in the SOL and tibialis anterior (TA) muscles. Perturbations of 6 deg were imposed at three different measurement intervals: Pre (immediately before the walking intervention), Mid (after approximately 30 min of walking) and Post (immediately after the intervention). Between the Pre-Mid and Mid-Post intervals, subjects walked for 30 min at a gradient of 3%. After the intervention, the amplitude and velocity of fascicle stretch both decreased (by 46 and 59%, respectively; P < 0.001) in response to a constant external perturbation, as did short (33%; P < 0.01) and medium (25%; P < 0.01) latency stretch reflex amplitudes. A faster perturbation elicited at the end of the protocol resulted in a recovery of fascicle stretch velocities and short latency reflex amplitudes to the pre-exercise values. These findings suggest that repeated stretching and shortening of a muscle-tendon unit can induce short-term structural changes in the tendinous tissues during human walking. The data also highlight the effect of these changes on neural feedback from muscle sensory afferents.


Subject(s)
Adaptation, Physiological/physiology , Gait/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Physical Exertion/physiology , Reaction Time/physiology , Reflex, Stretch/physiology , Walking/physiology , Adult , Female , Humans , Male
14.
J Physiol ; 587(Pt 13): 3375-82, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19451207

ABSTRACT

During human walking, a sudden trip may elicit a Ia afferent fibre mediated short latency stretch reflex. The aim of this study was to investigate soleus (SOL) muscle mechanical behaviour in response to dorsiflexion perturbations, and to relate this behaviour to short latency stretch reflex responses. Twelve healthy subjects walked on a treadmill with the left leg attached to an actuator capable of rapidly dorsiflexing the ankle joint. Ultrasound was used to measure fascicle lengths in SOL during walking, and surface electromyography (EMG) was used to record muscle activation. Dorsiflexion perturbations of 6 deg were applied during mid-stance at walking speeds of 3, 4 and 5 km h(-1). At each walking speed, perturbations were delivered at three different velocities (slow: approximately 170 deg s(-1), mid: approximately 230 deg s(-1), fast: approximately 280 deg s(-1)). At 5 km h(-1), fascicle stretch amplitude was 34-40% smaller and fascicle stretch velocity 22-28% slower than at 3 km h(-1) in response to a constant amplitude perturbation, whilst stretch reflex amplitudes were unchanged. Changes in fascicle stretch parameters can be attributed to an increase in muscle stiffness at faster walking speeds. As stretch velocity is a potent stimulus to muscle spindles, a decrease in the velocity of fascicle stretch at faster walking speeds would be expected to decrease spindle afferent feedback and thus stretch reflex amplitudes, which did not occur. It is therefore postulated that other mechanisms, such as altered fusimotor drive, reduced pre-synaptic inhibition and/or increased descending excitatory input, acted to maintain motoneurone output as walking speed increased, preventing a decrease in short latency reflex amplitudes.


Subject(s)
Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Reflex, Stretch/physiology , Walking/physiology , Adult , Ankle Joint/innervation , Ankle Joint/physiology , Biomechanical Phenomena , Electromyography , Female , Gait/physiology , Humans , Male , Muscle Spindles/innervation , Muscle Spindles/physiology , Young Adult
15.
J Electromyogr Kinesiol ; 19(2): 347-56, 2009 Apr.
Article in English | MEDLINE | ID: mdl-17937994

ABSTRACT

Effects of an exhaustive eccentric exercise (EE) on the motor control of maximal velocity rhythmic elbow extension/flexion movement (RM) were examined in eight male students. The exhaustive EE consisted of 100 maximal eccentric actions of the elbow flexor muscles. Movement range was 40-170 degrees in EE at an angular velocity of 2rads(-1). A directive scaled RM of 60 degrees with visual feedback was performed in a sitting position, with the right forearm fixed to the lever arm in horizontal plane above protractor. Surface electromyographic activity (EMG) was recorded from the biceps brachii (BB) and triceps brachii (TB) muscles. Maximal isokinetic eccentric and concentric tests and RM test were conducted before, after, 0.5h, 2 days and 7 days after the exercise. Dynamic force production was deteriorated after EE (P<.001), and did not recover fully within 7 days. The delayed recovery phase was characterized by delayed onset of muscle soreness (DOMS) and elevated serum creatine kinase (CK) activity. The RM test revealed a delayed increase of the fatigued BB muscle EMG activity, but the maximal RM velocity could be preserved. The present results emphasize the capacity of the neuromuscular system to compensate for prolonged eccentric-induced contractile failure by optimizing antagonistic muscles coordination in a demanding rhythmic task. The underlying compensatory mechanisms could be related to increased sensitization of small diameter muscle nerve endings.


Subject(s)
Elbow Joint/physiology , Movement/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Physical Endurance/physiology , Physical Exertion/physiology , Adaptation, Physiological/physiology , Humans , Male , Motor Skills/physiology , Periodicity , Task Performance and Analysis , Young Adult
16.
J Sports Sci Med ; 8(4): 553-9, 2009.
Article in English | MEDLINE | ID: mdl-24149597

ABSTRACT

Bone response to a single bout of exercise can be observed with biochemical markers of bone formation and resorption. The purpose of this study was to examine the response of bone biochemical markers to a single bout of exhaustive high-impact exercise. 15 physically active young subjects volunteered to participate. The subjects performed continuous bilateral jumping with the ankle plantarflexors at 65 % of maximal ground reaction force (GRF) until exhaustion. Loading was characterized by analyzing the GRF recorded for the duration of the exercise. Venous blood samples were taken at baseline, immediately after, 2h and on day 1 and day 2 after the exercise. Procollagen type I amino terminal propeptide (P1NP, marker of bone formation) and carboxyterminal crosslinked telopeptide (CTx, marker of bone resorption) were analyzed from the blood samples. CTx increased significantly (32 %, p = 0.015) two days after the exercise and there was a tendensy towards increase seen in P1NP (p = 0.053) one day after the exercise. A significant positive correlation (r = 0.49 to 0.69, p ≤ 0.038) was observed between change in P1NP from baseline to day 1 and exercise variables (maximal slope of acceleration, body weight (BW) adjusted maximal GRF, BW adjusted GRF exercise intensity and osteogenic index). Based on the two biochemical bone turnover markers, it can be concluded that bone turnover is increased in response to a very strenuous single bout of exhaustive high-impact exercise. Key pointsStudies on bone acute biochemical response to loading have yielded unequivocal results.There is a paucity of research on the biochemical bone response to high impact exercise.An increase in bone turnover was observed one to two days post exercise.

17.
Exerc Sport Sci Rev ; 36(4): 193-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18815488

ABSTRACT

High-speed ultrasonography has revealed that, in human locomotion, the nature of fascicle and tendon length changes varies depending on the task, contraction intensity, and the muscles involved. The findings emphasize that the active fascicles of the gastrocnemius muscle are suddenly stretched, although they are shortening. This short-lasting stretch triggers the stretch reflex, timing of which is dependent on running speed.


Subject(s)
Movement/physiology , Muscle, Skeletal/physiology , Running/physiology , Tendons/physiology , Walking/physiology , Biomechanical Phenomena , Humans , Muscle Contraction/physiology , Muscle, Skeletal/diagnostic imaging , Reflex, Stretch/physiology , Ultrasonography
18.
J Appl Physiol (1985) ; 105(1): 226-32, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18483163

ABSTRACT

The aims of this study were to examine changes in the distribution of a stretch to the muscle fascicles with changes in contraction intensity in the human triceps surae and to relate fascicle stretch responses to short-latency stretch reflex behavior. Thirteen healthy subjects were seated in an ankle ergometer, and dorsiflexion stretches (8 degrees ; 250 degrees /s) were applied to the triceps surae at different moment levels (0-100% of maximal voluntary contraction). Surface EMG was recorded in the medial gastrocnemius, soleus, and tibialis anterior muscles, and ultrasound was used to measure medial gastrocnemius and soleus fascicle lengths. At low forces, reflex amplitudes increased despite a lack of change or even a decrease in fascicle stretch velocities. At high forces, lower fascicle stretch velocities coincided with smaller stretch reflexes. The results revealed a decline in fascicle stretch velocity of over 50% between passive conditions and maximal force levels in the major muscles of the triceps surae. This is likely to be an important factor related to the decline in stretch reflex amplitudes at high forces. Because short-latency stretch reflexes contribute to force production and stiffness regulation of human muscle fibers, a reduction in afferent feedback from muscle spindles could decrease the efficacy of human movements involving the triceps surae, particularly where high force production is required.


Subject(s)
Muscle, Skeletal/physiology , Reflex, Stretch/physiology , Adult , Data Interpretation, Statistical , Electromyography , Ergometry , Female , Humans , Isometric Contraction/physiology , Leg/diagnostic imaging , Leg/physiology , Male , Muscle Spindles/physiology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/innervation , Ultrasonography
19.
Med Sci Sports Exerc ; 40(6): 1111-6, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18460994

ABSTRACT

PURPOSE: The present study characterized pole and ski forces in classical technique cross-country skiing. Eight elite junior cross-country skiers performed diagonal skiing at 65%, 75%, 90%, and 100% of maximum speed on a stable 100-m-low uphill (2.5 degrees ). METHOD: : The ski and the pole forces (vertical (Fz) and horizontal (Fy) directions) on the right and left sides were recorded separately when the skier skied over a special custom-made force platform system placed at the end of the uphill course. The entire system consisted of four separate 20-m-long rows of 1-m-long force plates connected in series, row by row. RESULTS: When the forces were averaged for the various functional phases of skiing cycle, the ski Fz during the gliding phase decreased and the braking ski Fy and Fz remained the same with higher skiing speed. During the subsequent kick phase, both ski Fy and Fz increased significantly as a function of the skiing speed. Consequently, the Fy ratio between the ski and the pole plant increased with faster skiing speed. Simultaneously measured EMGs from five different muscles showed that the abdominals had a pattern of increasing activation with increase in speed of skiing. All the other muscles, vastus lateralis (VL), rectus femoris (RF), erector spinae (ES), and medial gastrocnemius (MG), were obviously active in the preloading and the kick phases. CONCLUSIONS: The speed dependence of the ski and the pole force distributions in the present study are important for further understanding of the complexity of cross-country skiing. Especially relevant is to use these results as basis for studies aimed at better understanding of the propulsive force production, when more comprehensive EMG analysis is complemented with simultaneous kinematic recordings at varied slope, speed, and waxing conditions.


Subject(s)
Muscle, Skeletal/physiology , Skiing/physiology , Task Performance and Analysis , Adolescent , Biomechanical Phenomena , Electromyography , Humans , Male
20.
J Appl Physiol (1985) ; 103(4): 1395-401, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17673559

ABSTRACT

High mechanical loading was hypothesized to induce the expression of angiogenic and/or lymphangiogenic extracellular matrix (ECM) proteins in skeletal muscle. Eight men performed a strenuous exercise protocol, which consisted of 100 unilateral maximal drop jumps followed by submaximal jumping until exhaustion. Muscle biopsies were taken 30 min and 48 h postexercise from the vastus lateralis muscle and analyzed for the following parameters: mRNA and protein expression of ECM-associated CCN proteins [cysteine-rich angiogenic protein 61 (Cyr61)/CCN1, connective tissue growth factor (CTGF)/CCN2], and mRNA expression of vascular endothelial growth factors (VEGFs) and hypoxia-inducible factor-1alpha. The mRNA expression of Cyr61 and CTGF increased 30 min after the exercise (14- and 2.5-fold, respectively; P < 0.001). Cyr61 remained elevated 48 h postexercise (threefold; P < 0.05). The mRNA levels of VEGF-A, VEGF-B, VEGF-C, VEGF-D, or hypoxia-inducible factor-1alpha did not change significantly at either 30 min or 48 h postexercise; however, the variation between subjects increased markedly in VEGF-A and VEGF-B mRNA. Cyr61 protein levels were higher at both 30 min and 48 h after the exercise compared with the control (P < 0.05). Cyr61 and CTGF proteins were localized to muscle fibers and the surrounding ECM by immunohistochemistry. Fast fibers stained more intensively than slow fibers. In conclusion, mechanical loading induces rapid expression of CCN proteins in human skeletal muscle. This may be one of the early mechanisms involved in skeletal muscle remodeling after exercise, since Cyr61 and CTGF regulate the expression of genes involved in angiogenesis and ECM remodeling.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Exercise/physiology , Immediate-Early Proteins/metabolism , Insulin-Like Growth Factor Binding Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Muscle, Skeletal/metabolism , Peptide Fragments/metabolism , Adult , Amyloid beta-Protein Precursor/genetics , Biopsy , Connective Tissue Growth Factor , Cysteine-Rich Protein 61 , Gene Expression , Gene Expression Regulation , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immediate-Early Proteins/genetics , Insulin-Like Growth Factor Binding Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Male , Peptide Fragments/genetics , Stress, Mechanical , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor B/genetics , Vascular Endothelial Growth Factor B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...