Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Infect Dis ; 222(10): 1681-1691, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32687161

ABSTRACT

BACKGROUND: A previous RTS,S/AS01B vaccine challenge trial demonstrated that a 3-dose (0-1-7-month) regimen with a fractional third dose can produce high vaccine efficacy (VE) in adults challenged 3 weeks after vaccination. This study explored the VE of different delayed fractional dose regimens of adult and pediatric RTS,S/AS01 formulations. METHODS: A total of 130 participants were randomized into 5 groups. Four groups received 3 doses of RTS,S/AS01B or RTS,S/AS01E on a 0-1-7-month schedule, with the final 1 or 2 doses being fractional (one-fifth dose volume). One group received 1 full (month 0) and 1 fractional (month 7) dose of RTS,S/AS01E. Immunized and unvaccinated control participants underwent Plasmodium falciparum-infected mosquito challenge (controlled human malaria infection) 3 months after immunization, a timing chosen to potentially discriminate VEs between groups. RESULTS: The VE of 3-dose formulations ranged from 55% (95% confidence interval, 27%-72%) to 76% (48%-89%). Groups administered equivalent formulations of RTS,S/AS01E and RTS,S/AS01B demonstrated comparable VE. The 2-dose group demonstrated lower VE (29% [95% confidence interval, 6%-46%]). All regimens were well tolerated and immunogenic, with trends toward higher anti-circumsporozoite antibody titers in participants protected against infection. CONCLUSIONS: RTS,S/AS01E can provide VE comparable to an equivalent RTS,S/AS01B regimen in adults, suggesting a universal formulation may be considered. Results also suggest that the 2-dose regimen is inferior to the 3-dose regimens evaluated. CLINICAL TRIAL REGISTRATION: NCT03162614.


Subject(s)
Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Malaria/immunology , Malaria/prevention & control , Adolescent , Adult , Female , Humans , Immunization Schedule , Infection Control , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Male , Middle Aged , Plasmodium falciparum/immunology , Vaccination , Young Adult
2.
J Infect Dis ; 214(5): 762-71, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27296848

ABSTRACT

BACKGROUND: Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. METHODS: In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. RESULTS: A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. DISCUSSIONS: A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. CLINICAL TRIALS REGISTRATION: NCT01857869.


Subject(s)
Immunization Schedule , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Malaria/prevention & control , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Adolescent , Adult , Antibodies, Protozoan/biosynthesis , Antibodies, Protozoan/immunology , Antibody Affinity , Female , Humans , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Light Chains/biosynthesis , Male , Middle Aged , Young Adult
3.
PLoS Negl Trop Dis ; 10(2): e0004423, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26919472

ABSTRACT

BACKGROUND: A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. METHODS: We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15 µg, 30 µg, or 60 µg respectively of VMP001, all formulated in 500 µL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. RESULTS: The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. SIGNIFICANCE: This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.


Subject(s)
Malaria Vaccines/immunology , Malaria, Vivax/prevention & control , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Antibodies, Protozoan/immunology , Female , Humans , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Male , Middle Aged , Protozoan Proteins/administration & dosage , Protozoan Proteins/adverse effects , Vaccination , Young Adult
4.
PLoS One ; 10(7): e0131571, 2015.
Article in English | MEDLINE | ID: mdl-26148007

ABSTRACT

METHODS: In an observer blind, phase 2 trial, 55 adults were randomized to receive one dose of Ad35.CS.01 vaccine followed by two doses of RTS,S/AS01 (ARR-group) or three doses of RTS,S/AS01 (RRR-group) at months 0, 1, 2 followed by controlled human malaria infection. RESULTS: ARR and RRR vaccine regimens were well tolerated. Efficacy of ARR and RRR groups after controlled human malaria infection was 44% (95% confidence interval 21%-60%) and 52% (25%-70%), respectively. The RRR-group had greater anti-CS specific IgG titers than did the ARR-group. There were higher numbers of CS-specific CD4 T-cells expressing > 2 cytokine/activation markers and more ex vivo IFN-γ enzyme-linked immunospots in the ARR-group than the RRR-group. Protected subjects had higher CS-specific IgG titers than non-protected subjects (geometric mean titer, 120.8 vs 51.8 EU/ml, respectively; P = .001). CONCLUSIONS: An increase in vaccine efficacy of ARR-group over RRR-group was not achieved. Future strategies to improve upon RTS,S-induced protection may need to utilize alternative highly immunogenic prime-boost regimens and/or additional target antigens. TRIAL REGISTRATION: ClinicalTrials.gov NCT01366534.


Subject(s)
Malaria Vaccines/immunology , Malaria/immunology , Malaria/prevention & control , Sporozoites/immunology , Antibodies, Protozoan/immunology , Antibody Formation/immunology , CD4-Positive T-Lymphocytes/immunology , Double-Blind Method , Humans , Immunization, Secondary/methods , Immunoglobulin G/immunology , Immunologic Tests/methods , Interferon-gamma/immunology , Vaccination/methods
5.
Malar J ; 13: 288, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25066459

ABSTRACT

BACKGROUND: The use of quantitative real-time PCR (qPCR) has allowed for precise quantification of parasites in the prepatent period and greatly improved the reproducibility and statistical power of controlled human malaria infection (CHMI) trials. Parasitological data presented here are from non-immunized, control-challenged subjects who participated in two CHMI trials conducted at the Walter Reed Army Institute of Research (WRAIR). METHODS: Standardized sporozoite challenge was achieved through the bite of five Anopheles stephensi mosquitoes infected with the 3D7clone of the NF54 strain of Plasmodium falciparum. Blood smears were scored positive when two unambiguous parasites were found. Analysis of parasitological PCR data was performed on log-transformed data using an independent sample t-test when comparing the two studies. The multiplication rate of blood-stage parasites was estimated using the linear model. RESULTS: On average, parasites were detected 4.91 days (95% CI = 4.190 to 5.627) before smears. The earliest parasites were detected within 120 hours (5.01 days) after challenge. Parasite densities showed consistent cyclic patterns of blood-stage parasite growth in all volunteers. The parasite multiplication rates for both studies was 8.18 (95% CI = 6.162 to 10.20). Data showed that at low parasite densities, a combination of sequestration and stochastic effects of low copy number DNA may impact qPCR detection and the parasite detection limit. CONCLUSION: Smear positive is an endpoint which antimalarial rescue is imperative whereas early detection of parasitological data by qPCR can allow for better anticipation of the endpoint. This would allow for early treatment to reduce clinical illness and risk for study participants. To use qPCR as the primary endpoint in CHMI trials, an algorithm of two positives by qPCR where one of the positives must have parasite density of at least 2 parasites/µL is proposed.


Subject(s)
Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Parasitemia/blood , Parasitemia/parasitology , Plasmodium falciparum/genetics , Adolescent , Adult , Control Groups , DNA, Protozoan/blood , Humans , Malaria, Falciparum/epidemiology , Middle Aged , Parasite Load , Parasitemia/epidemiology , Real-Time Polymerase Chain Reaction , Young Adult
6.
Vaccine ; 31(43): 4975-83, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24029408

ABSTRACT

BACKGROUND: Immunization with genetically engineered, attenuated malaria parasites (GAP) that arrest during liver infection confers sterile protection in mouse malaria models. A first generation Plasmodium falciparum GAP (Pf p52(-)/p36(-) GAP) was previously generated by deletion of two pre-erythrocytic stage-expressed genes (P52 and P36) in the NF54 strain. METHODS: A first-in-human, proof-of-concept, safety and immunogenicity clinical trial in six human volunteers was conducted. Exposure consisted of delivery of Pf p52(-)/p36(-) GAP sporozoites via infected Anopheles mosquito bite with a five-bite/volunteer exposure followed by an approximately 200-bite exposure/volunteer one month later. RESULTS: The exposures were well tolerated with mild to moderate local and systemic reactions. All volunteers remained blood stage negative after low dose exposure. Five volunteers remained blood stage negative after high dose exposure. One volunteer developed peripheral parasitemia twelve days after high dose exposure. Together the findings indicate that Pf p52(-)/p36(-) GAP was severely but not completely attenuated. All six volunteers developed antibodies to CSP. Furthermore, IFN-γ responses to whole sporozoites and multiple antigens were elicited in 5 of 6 volunteers, with both CD4 and CD8 cell cytokine production detected. CONCLUSION: Severe attenuation and favorable immune responses following administration of a first generation Pf p52(-)/p36(-) GAP suggests that further development of live-attenuated strains using genetic engineering should be pursued.


Subject(s)
Anopheles/parasitology , Immunization/methods , Malaria Vaccines/immunology , Malaria/prevention & control , Plasmodium falciparum/immunology , Sporozoites/immunology , Adolescent , Adult , Animals , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Gene Deletion , Genes, Protozoan , Healthy Volunteers , Humans , Immunization/adverse effects , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria Vaccines/genetics , Male , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Young Adult
7.
Malar J ; 12: 277, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23927553

ABSTRACT

BACKGROUND: The use of malaria-specific quantitative real-time PCR (qPCR) is increasing due to its high sensitivity, speciation and quantification of malaria parasites. However, due to the lack of consensus or standardized methods in performing qPCR, it is difficult to evaluate and/or compare the quality of work reported by different authors for a cross-study and/or cross-platform assay analysis. METHODS: The performances of seven published qPCR assays that detect Plasmodium spp or Plasmodium falciparum were compared using standard DNA and samples from a clinical trial. Amplification and qPCR measurements were performed using the Applied Biosystems 7500 Fast Real-Time PCR System. All the analyses were automatically established using the default settings. For the TaqMan probe format, the assays were performed in the background of QuantiFast Probe Master Mix whereas in SYBR Green format, the assays were performed in the background of QuantiFast SYBR Green Master Mix and QuantiTect SYBR Green Master Mix background. RESULTS: Assays with high PCR efficiencies outperformed those with low efficiencies in all categories including sensitivity, precision and consistency regardless of the assay format and background. With the exception of one assay, all assays evaluated showed lower sensitivity compared to what have been published. When samples from a malaria challenge study were analysed, the qPCR assay with the overall best performance detected parasites in subjects earliest and with most consistency. CONCLUSION: The data demonstrate the need for increased consensus and guidelines that will encourage better experimental practices, allowing more consistent and unambiguous interpretation of qPCR results.


Subject(s)
Malaria/diagnosis , Molecular Diagnostic Techniques/methods , Parasitology/methods , Plasmodium/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Humans , Malaria/parasitology , Plasmodium/genetics , Reproducibility of Results , Sensitivity and Specificity
8.
Hum Vaccin Immunother ; 9(10): 2165-77, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23899517

ABSTRACT

BACKGROUND: In a prior study, a DNA prime / adenovirus boost vaccine (DNA/Ad) expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) (NMRC-M3V-D/Ad-PfCA Vaccine) induced 27% protection against controlled human malaria infection (CHMI). To investigate the contribution of DNA priming, we tested the efficacy of adenovirus vaccine alone (NMRC-M3V-Ad-PfCA ) in a Phase 1 clinical trial. METHODOLOGY/PRINCIPAL FINDINGS: The regimen was a single intramuscular injection with two non-replicating human serotype 5 adenovectors encoding CSP and AMA1, respectively. One x 10 (10) particle units of each construct were combined prior to administration. The regimen was safe and well-tolerated. Four weeks later, 18 study subjects received P. falciparum CHMI administered by mosquito bite. None were fully protected although one showed delayed onset of parasitemia. Antibody responses were low, with geometric mean CSP ELISA titer of 381 (range<50-1626) and AMA1 ELISA of 4.95 µg/mL (range 0.2-38). Summed ex vivo IFN-γ ELISpot responses to overlapping peptides were robust, with geometric mean spot forming cells/million peripheral blood mononuclear cells [sfc/m] for CSP of 273 (range 38-2550) and for AMA1 of 1303 (range 435-4594). CD4+ and CD8+ T cell IFN-γ responses to CSP were positive by flow cytometry in 25% and 56% of the research subjects, respectively, and to AMA1 in 94% and 100%, respectively. SIGNIFICANCE: In contrast to DNA/Ad, Ad alone did not protect against CHMI despite inducing broad, cell-mediated immunity, indicating that DNA priming is required for protection by the adenovirus-vectored vaccine. ClinicalTrials.gov Identifier: NCT00392015.


Subject(s)
Adenoviruses, Human/genetics , Antigens, Protozoan/immunology , Genetic Vectors , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Membrane Proteins/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Antibodies, Protozoan/blood , Antigens, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunospot Assay , Female , Humans , Injections, Intramuscular , Interferon-gamma/metabolism , Leukocytes, Mononuclear/immunology , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria Vaccines/genetics , Male , Membrane Proteins/genetics , Middle Aged , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Young Adult
9.
Am J Trop Med Hyg ; 89(3): 501-6, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23836567

ABSTRACT

Plasmodium ovale is one of several clinically relevant malaria species known to cause disease in humans. However, in contrast to Plasmodium falciparum and Plasmodium vivax, which are responsible for most cases of human malaria, P. ovale has a wide distribution but low prevalence in tropical regions. Here, we report the case of a soldier returning from Liberia with P. ovale wallikeri malaria. This case highlights the limitations of both microscopy and the malaria rapid diagnostic test for diagnosing infection with P. ovale and for distinguishing P. ovale wallikeri from P. ovale curtisi. To our knowledge, this is the first case report in which quantitative real-time polymerase chain reaction amplification using the Cytochrome B gene, coupled with genomic sequencing of the potra locus, was used for definitive diagnosis of P. ovale wallikeri malaria.


Subject(s)
DNA, Protozoan/isolation & purification , Malaria/diagnosis , Plasmodium ovale/isolation & purification , Real-Time Polymerase Chain Reaction , Adult , Atovaquone/therapeutic use , Base Sequence , DNA, Protozoan/genetics , Genome, Protozoan , Humans , Liberia , Malaria/drug therapy , Malaria/parasitology , Male , Military Personnel , Molecular Sequence Data , Plasmodium ovale/genetics , Proguanil/therapeutic use , Sequence Alignment
10.
PLoS One ; 8(2): e55571, 2013.
Article in English | MEDLINE | ID: mdl-23457473

ABSTRACT

BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. TRIAL REGISTRATION: ClinicalTrials.govNCT00870987.


Subject(s)
Adenoviruses, Human/genetics , Antigens, Protozoan/genetics , Malaria Vaccines/therapeutic use , Malaria, Falciparum/prevention & control , Membrane Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Vaccines, DNA/therapeutic use , Adenoviruses, Human/immunology , Adolescent , Adult , Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Female , Humans , Immunity, Cellular , Interferon-gamma/immunology , Malaria Vaccines/adverse effects , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Membrane Proteins/immunology , Middle Aged , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Vaccines, DNA/adverse effects , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Young Adult
11.
J Infect Dis ; 206(4): 523-33, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22693228

ABSTRACT

Human immunodeficiency virus type 1 and malaria are co-endemic in many areas. We evaluated the effects of Plasmodium inui infection on the performance of a simian immunodeficiency virus (SIV) DNA vaccine. Rhesus macaques were infected with P. inui by transfusion of whole blood from a persistently infected animal. Animals with and animals without P. inui infection were then vaccinated 4 times with an SIV DNA vaccine encoding SIVgag, SIVpol, and SIVenv. Animals were subsequently challenged with thirty 50% rhesus monkey infectious doses of SIVmac251 6 weeks after the last vaccination. P. inui-infected immunized animals showed a significantly higher viral load than animals without P. inui infection (P = .010, by the Wilcoxon rank sum test). The higher viral loads in the P. inui-infected animals were durable and were observed at all sampling time points across the study (P = .00245, by the Wilcoxon rank test). The P. inui-infected animals also had correspondingly lower CD4(+) cell counts. There were fewer vaccine-specific CD4(+) and CD8(+) cells in the P. inui-infected animals, compared with uninfected animals. Of importance, P. inui infection seemed to decrease the number of CD8(+) cells that could proliferate or secrete interferon γ, although the number of CD8(+) cells capable of secreting tumor necrosis factor α following in vitro stimulation was increased. This study demonstrated that P. inui infection had an influence on the immune response to an SIV DNA vaccine and decreased the vaccine's efficacy.


Subject(s)
Malaria/immunology , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , Vaccines, DNA/immunology , Animals , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Interferon-gamma/metabolism , Macaca mulatta , SAIDS Vaccines/administration & dosage , Simian Immunodeficiency Virus/isolation & purification , Tumor Necrosis Factor-alpha/metabolism , Vaccination/methods , Vaccines, DNA/administration & dosage , Viral Load , Viral Proteins/genetics , Viral Proteins/immunology
12.
Vaccine ; 30(36): 5302-4, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22659449

ABSTRACT

Early clinical investigations of candidate malaria vaccines and antimalarial medications increasingly employ an established model of controlled human malaria infection (CHMI). Study results are used to guide further clinical development of vaccines and antimalarial medications as CHMI results to date are generally predictive of efficacy in malaria-endemic areas. The urgency to rapidly develop an efficacious malaria vaccine has increased demand for efficacy studies that include CHMI and the need for comparability of study results among the different centres conducting CHMI. An initial meeting with the goal to optimize and standardise CHMI procedures was held in 2009 with follow-up meetings in March and June 2010 to harmonise methods used at different centres. The end result is a standardised document for the design and conduct of CHMI and a second document for the microscopy methods used to determine the patency endpoint. These documents will facilitate high accuracy and comparability of CHMI studies and will be revised commensurate with advances in the field.


Subject(s)
Culicidae , Insect Bites and Stings , Malaria Vaccines/standards , Malaria/prevention & control , Animals , Humans , Malaria/etiology , Malaria Vaccines/immunology
13.
PLoS One ; 6(10): e25868, 2011.
Article in English | MEDLINE | ID: mdl-22003411

ABSTRACT

BACKGROUND: A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge. METHODOLOGY/PRINCIPAL FINDINGS: NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP). It is one component of a two-component vaccine NMRC-M3V-Ad-PfCA consisting of one adenovector encoding CSP and one encoding apical membrane antigen-1 (AMA1) that was evaluated for safety and immunogenicity in an earlier study (see companion paper, Sedegah et al). Fourteen Ad5 seropositive or negative adults received two doses of NMRC-MV-Ad-PfC sixteen weeks apart, at 1 x 1010 particle units per dose. The vaccine was safe and well tolerated. All volunteers developed positive ELISpot responses by 28 days after the first immunization (geometric mean 272 spot forming cells/million[sfc/m]) that declined during the following 16 weeks and increased after the second dose to levels that in most cases were less than the initial peak (geometric mean 119 sfc/m). CD8+ predominated over CD4+ responses, as in the first clinical trial. Antibody responses were poor and like ELISpot responses increased after the second immunization but did not exceed the initial peak. Pre-existing neutralizing antibodies (NAb) to Ad5 did not affect the immunogenicity of the first dose, but the fold increase in NAb induced by the first dose was significantly associated with poorer antibody responses after the second dose, while ELISpot responses remained unaffected. When challenged by the bite of P. falciparum-infected mosquitoes, two of 11 volunteers showed a delay in the time to patency compared to infectivity controls, but no volunteers were sterilely protected. SIGNIFICANCE: The NMRC-MV-Ad-PfC vaccine expressing CSP was safe and well tolerated given as two doses, but did not provide sterile protection. TRIAL REGISTRATION: ClinicalTrials.gov NCT00392015.


Subject(s)
Adenoviridae/genetics , Genetic Vectors/genetics , Malaria Vaccines/adverse effects , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/adverse effects , Protozoan Proteins/immunology , Adolescent , Adult , Antigens, Protozoan/adverse effects , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Dose-Response Relationship, Immunologic , Female , Gene Expression , Humans , Malaria Vaccines/genetics , Male , Membrane Proteins/adverse effects , Membrane Proteins/genetics , Membrane Proteins/immunology , Middle Aged , Plasmodium falciparum/cytology , Protozoan Proteins/genetics , Sporozoites/immunology , Young Adult
14.
PLoS One ; 4(12): e8138, 2009 Dec 03.
Article in English | MEDLINE | ID: mdl-19997632

ABSTRACT

A Plasmodium falciparum 3D7 strain Apical Membrane Antigen-1 (AMA1) vaccine, formulated with AS02(A) adjuvant, slowed parasite growth in a recent Phase 1/2a trial, however sterile protection was not observed. We tested this AS02(A), and a Montanide ISA720 (ISA) formulation of 3D7 AMA1 in Aotus monkeys. The 3D7 parasite does not invade Aotus erythrocytes, hence two heterologous strains, FCH/4 and FVO, were used for challenge, FCH/4 AMA1 being more homologous to 3D7 than FVO AMA1. Following three vaccinations, the monkeys were challenged with 50,000 FCH/4 or 10,000 FVO parasites. Three of the six animals in the AMA+ISA group were protected against FCH/4 challenge. One monkey did not become parasitemic, another showed only a short period of low level parasitemia that self-cured, and a third animal showed a delay before exhibiting its parasitemic phase. This is the first protection shown in primates with a recombinant P. falciparum AMA1 without formulation in Freund's complete adjuvant. No animals in the AMA+AS02(A) group were protected, but this group exhibited a trend towards reduced growth rate. A second group of monkeys vaccinated with AMA+ISA vaccine was not protected against FVO challenge, suggesting strain-specificity of AMA1-based protection. Protection against FCH/4 strain correlated with the quantity of induced antibodies, as the protected animals were the only ones to have in vitro parasite growth inhibitory activity of >70% at 1:10 serum dilution; immuno-fluorescence titers >8,000; ELISA titers against full-length AMA1 >300,000 and ELISA titer against AMA1 domains1+2 >100,000. A negative correlation between log ELISA titer and day 11 cumulative parasitemia (Spearman rank r = -0.780, p value = 0.0001), further confirmed the relationship between antibody titer and protection. High titers of cross-strain inhibitory antibodies against AMA1 are therefore critical to confer solid protection, and the Aotus model can be used to down-select future AMA1 formulations, prior to advanced human trials.


Subject(s)
Antibodies, Protozoan/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Amino Acid Sequence , Animals , Antibody Formation/immunology , Antibody Specificity/immunology , Aotus trivirgatus , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Immunoassay , Malaria Vaccines/chemistry , Malaria Vaccines/immunology , Malaria, Falciparum/complications , Molecular Sequence Data , Parasitemia/complications , Parasitemia/immunology , Plasmodium falciparum/growth & development , Plasmodium falciparum/immunology , Protein Folding , Protozoan Proteins/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Sequence Analysis, Protein , Titrimetry , Vaccination
15.
Vaccine ; 26(23): 2818-23, 2008 Jun 02.
Article in English | MEDLINE | ID: mdl-18455276

ABSTRACT

Falciparum malaria vaccine candidates have been developed using recombinant, replication-deficient serotype 5 and 35 adenoviruses (Ad5, Ad35) encoding the Plasmodium falciparum circumsporozoite surface protein (CSP) (Ad5.CS, Ad35.CS) (Crucell Holland BV, Leiden, The Netherlands). To evaluate the immunogenicity of these constructs, BALB/cJ mice were immunized twice with either Ad5.CS, Ad35.CS, empty Ad5-vector (eAd5), empty Ad35 vector (eAd35), or saline. Another group received the CSP-based RTS,S malaria vaccine formulated in the proprietary Adjuvant System AS01B (GlaxoSmithKline Biologicals, Rixensart, Belgium). Here we report that Ad5.CS, Ad35.CS, and RTS,S/AS01B, elicited both cellular and serologic CSP antigen-specific responses in mice. These adenoviral vectors induce strong malaria-specific immunity and warrant further evaluation.


Subject(s)
Adenoviridae/genetics , Antibodies, Protozoan/biosynthesis , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Genetic Vectors , Interferon-gamma/biosynthesis , Malaria Vaccines/immunology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Sporozoites/immunology , Animals , Antibodies, Protozoan/analysis , Enzyme-Linked Immunosorbent Assay , Immunization Schedule , Immunization, Secondary , Male , Mice , Mice, Inbred BALB C
16.
Front Biosci ; 12: 3928-55, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17485348

ABSTRACT

More than 120 years after Alphonse Laveran's discovery of the blood-stage malaria parasite, there is no licensed malaria vaccine and malaria remains the world's most serious parasitic disease. Efforts to develop a vaccine have been thwarted by the complexity of the parasite's life cycle and the ability of the parasite to suppress and evade the immune response. Currently, there are several candidate vaccines in clinical trials and many more candidate vaccines that have shown efficacy in animal models or are based on studies of the immune responses of people who are resistant to malaria. The sequencing of the genomes of Plasmodium falciparum and Plasmodium yoelii yoelii in 2002 is expected to result in the identification of previously-unknown candidate vaccine targets from various stages of the Plasmodium life cycle. A great deal of effort is going into identifying the correlates of protection, potentially allowing more efficient testing of candidate vaccines in the future. The fact that a vaccine candidate has shown partial protection in field trials is a reason for hope that, with the proper effort and support, effective vaccines against malaria can be developed.


Subject(s)
Malaria Vaccines/immunology , Animals , Genomics , Immunity, Innate , Malaria Vaccines/adverse effects , Models, Animal , Proteomics , Vaccines, Synthetic/immunology
17.
Dis Aquat Organ ; 67(3): 259-66, 2005 Nov 28.
Article in English | MEDLINE | ID: mdl-16408842

ABSTRACT

Knowing the entire sequence of the gene encoding the DNA gyrase Subunit A (gyrA) of Edwardsiella tarda could be very useful for confirming the role of gyrA in quinolone resistance. Degenerate primers for the amplification of gyrA were designed from consensus nucleotide sequences of gyrA from 9 different Gram-negative bacteria, including Escherichia coli. With these primers, DNA segments of the predicted size were amplified from the genomic DNA of E. tarda and then the flanking sequences were determined by cassette ligation-mediated polymerase chain reaction. The nucleotide sequence of gyrA was highly homologous to those of other bacterial species, in both the whole open-reading frame and the quinolone-resistance-determining region (QRDR). The 2637-bp gyrA gene encodes a protein of 878 amino acids, preceded by a putative promoter, ribosome binding site and inverted repeated sequences for cruciform structures of DNA. However, the nucleotide sequence of the flanking region did not show any homologies with those of other bacterial DNA gyrase Subunit B genes (gyrB) and suggested the gyrase genes, gyrA and gyrB, are non-continuous on the chromosome of E. tarda. All of the 12 quinolone-resistant isolates examined have an alteration within the QRDR, Ser83 --> Arg, suggesting that, in E. tarda, resistance to quinolones is primarily related to alterations in gyrA. Transformation with the full sequence of E. tarda gyrA bearing the Ser83 --> Arg mutation was able to complement the sequence of the gyrA temperature-sensitive mutation in the E. coli KNK453 strain and to induce increased resistance to quinolone antibiotics at 42 degrees C.


Subject(s)
DNA Gyrase/genetics , Drug Resistance, Bacterial/genetics , Edwardsiella tarda/genetics , Mutation/genetics , Quinolines/toxicity , Base Sequence , Cloning, Molecular , DNA Primers , Edwardsiella tarda/drug effects , Edwardsiella tarda/physiology , Escherichia coli/genetics , Gene Components , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology
18.
Toxicol Pathol ; 31(4): 373-8, 2003.
Article in English | MEDLINE | ID: mdl-12851102

ABSTRACT

Currently available murine staphylococcal enterotoxin B (SEB) shock models require pretreatment with various agents to increase mouse sensitivity to SEB. This study was performed to show that C3H/HeJ mice are highly susceptible to intranasal SEB inoculation, which caused toxic shock without using pretreatment agents. For this purpose, mice were injected intranasally with different doses of SEB and observed for up to 1 month. The median lethal dose of SEB was determined using the probit procedure. Tissue samples were taken at different time points for histopathological examination. The LD(50) was found at 1.6 microg/g (95% fiducial limit (f.l.) 0.7 to 2.2), the LD(80) at 2.7 microg/g (95% f.l. 1.9 to 4.0) and the LD(90) at 3.6 microg/g (95% f.l. 2.7 to 6.4). Histopathologic examination revealed pulmonary edema and bronchopneumonia. Mucosal-associated lymphoid tissue first became activated, followed by increasing lymphocyte apoptosis and depletion. In the liver there were intralobular and portal inflammatory foci with increasing lymphocyte apoptosis and degenerative necrosis. The splenic white pulp was characterized by early activation and subsequent depletion of lymphoid follicle germinal centers. The thymus initially was activated, followed by increasing apoptosis and migration of lymphoid cells from the cortex to the medulla. The pathological features detected in the mice were similar to those of rhesus monkeys treated with SEB aerosol challenge.


Subject(s)
Disease Models, Animal , Enterotoxins/toxicity , Shock, Septic/pathology , Administration, Intranasal , Animals , Dose-Response Relationship, Drug , Enterotoxins/administration & dosage , Female , Intestines/pathology , Kidney/pathology , Lethal Dose 50 , Liver/pathology , Lung/pathology , Mice , Shock, Septic/mortality , Thymus Gland/pathology
19.
Toxicology ; 187(2-3): 229-38, 2003 May 03.
Article in English | MEDLINE | ID: mdl-12699911

ABSTRACT

In this study we made a series of site-directed mutants of staphylococcal enterotoxin B (SEB), in which histidine residues in the molecule were replaced by tyrosine. The mutant genes were cloned and expressed, and the corresponding proteins were purified. These mutant proteins were tested for binding to human HLA-DR4 and for mitogenetic activity in mouse splenocyte culture. Toxicity of the proteins in vivo was evaluated in the actinomycin D-primed C3H/HeJ mouse model. We found that SEB mutant proteins with fewer than four histidine-to-tyrosine (his-to-tyr) substitutions retained toxic properties similar to wild-type SEB. However, studies showed that his-to-tyr substitution of four consecutive histidine residues eliminated SEB toxicity. Our results clearly show that this genetically modified SEB protein is non-toxic and justifies its further development as a component of a new, safer vaccine to prevent SEB intoxication.


Subject(s)
Amino Acid Substitution , Enterotoxins/pharmacology , Enterotoxins/toxicity , Histidine/metabolism , Staphylococcus aureus/genetics , Tyrosine/metabolism , Animals , Cell Division/drug effects , Cells, Cultured , Enterotoxins/chemistry , Enterotoxins/genetics , Enterotoxins/metabolism , Escherichia coli/genetics , Female , HLA-DR4 Antigen/metabolism , Humans , Mice , Mice, Inbred C3H , Mitogens/genetics , Mitogens/pharmacology , Mutagenesis, Site-Directed , Point Mutation , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Recombinant Proteins/toxicity , Spleen/cytology , Spleen/drug effects , T-Lymphocytes/drug effects , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...