Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(15): eadn6095, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608013

ABSTRACT

Topological boundary modes in electronic and classical-wave systems exhibit fascinating properties. In photonics, topological nature of boundary modes can make them robust and endows them with an additional internal structure-pseudo-spins. Here, we introduce heterogeneous boundary modes, which are based on mixing two of the most widely used topological photonics platforms-the pseudo-spin-Hall-like and valley-Hall photonic topological insulators. We predict and confirm experimentally that transformation between the two, realized by altering the lattice geometry, enables a continuum of boundary states carrying both pseudo-spin and valley degrees of freedom (DoFs). When applied adiabatically, this leads to conversion between pseudo-spin and valley polarization. We show that such evolution gives rise to a geometrical phase associated with the synthetic gauge fields, which is confirmed via an Aharonov-Bohm type experiment on a silicon chip. Our results unveil a versatile approach to manipulating properties of topological photonic states and envision topological photonics as a powerful platform for devices based on synthetic DoFs.

2.
Light Sci Appl ; 12(1): 237, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37723158

ABSTRACT

Electric field is a powerful instrument in nanoscale engineering, providing wide functionalities for control in various optical and solid-state nanodevices. The development of a single optically resonant nanostructure operating with a charge-induced electrical field is challenging, but it could be extremely useful for novel nanophotonic horizons. Here, we show a resonant metal-semiconductor nanostructure with a static electric field created at the interface between its components by charge carriers generated via femtosecond laser irradiation. We study this field experimentally, probing it by second-harmonic generation signal, which, in our system, is time-dependent and has a non-quadratic signal/excitation power dependence. The developed numerical models reveal the influence of the optically induced static electric field on the second harmonic generation signal. We also show how metal work function and silicon surface defect density for different charge carrier concentrations affect the formation of this field. We estimate the value of optically-generated static electric field in this nanoantenna to achieve ≈108V/m. These findings pave the way for the creation of nanoantenna-based optical memory, programmable logic and neuromorphic devices.

3.
Nat Commun ; 14(1): 4629, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37532693

ABSTRACT

Topological phases of matter have been attracting significant attention across diverse fields, from inherently quantum systems to classical photonic and acoustic metamaterials. In photonics, topological phases offer resilience and bring novel opportunities to control light with pseudo-spins. However, topological photonic systems can suffer from limitations, such as breakdown of topological properties due to their symmetry-protected origin and radiative leakage. Here we introduce adiabatic topological photonic interfaces, which help to overcome these issues. We predict and experimentally confirm that topological metasurfaces with slowly varying synthetic gauge fields significantly improve the guiding features of spin-Hall and valley-Hall topological structures commonly used in the design of topological photonic devices. Adiabatic variation in the domain wall profiles leads to the delocalization of topological boundary modes, making them less sensitive to details of the lattice, perceiving the structure as an effectively homogeneous Dirac metasurface. As a result, the modes showcase improved bandgap crossing, longer radiative lifetimes and propagation distances.

4.
Nat Nanotechnol ; 18(8): 875-881, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37106049

ABSTRACT

The Dirac-like dispersion in photonic systems makes it possible to mimic the dispersion of relativistic spin-1/2 particles, which led to the development of the concept of photonic topological insulators. Despite recent demonstrations of various topological photonic phases, the full potential offered by Dirac photonic systems, specifically their ability to emulate the spin degree of freedom-referred to as pseudo-spin-beyond topological boundary modes has remained underexplored. Here we demonstrate that photonic Dirac metasurfaces with smooth one-dimensional trapping gauge potentials serve as effective waveguides with modes carrying pseudo-spin. We show that spatially varying gauge potentials act unevenly on the two pseudo-spins due to their different field distributions, which enables control of guided modes by their spin, a property that is unattainable with conventional optical waveguides. Silicon nanophotonic metasurfaces are used to experimentally confirm the properties of these guided modes and reveal their distinct spin-dependent radiative character; modes of opposite pseudo-spin exhibit disparate radiative lifetimes and couple differently to incident light. The spin-dependent field distributions and radiative lifetimes of their guided modes indicate that photonic Dirac metasurfaces could be used for spin-multiplexing, controlling the characteristics of optical guided modes, and tuning light-matter interactions with photonic pseudo-spins.

5.
Sci Adv ; 9(12): eabq4243, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36947629

ABSTRACT

In recent years, photonics has proven itself as an excellent platform for emulation of relativistic phenomena. Here, we show an example of relativistic-like trapping in photonic system that realizes Dirac-like dispersion with spatially inhomogeneous mass term. The modes trapped by such cavities, their energy levels, and corresponding orbitals are then characterized through optical imaging in real and momentum space. The fabricated cavities host a hierarchy of photonic modes with distinct radiation profiles directly analogous to various atomic orbitals endowed with unique characteristics, such as pseudo-particle-hall symmetry and spin degeneracy, and they carry topological charge which gives rise to radiative profiles with angular momentum. We demonstrate that these modes can be directionally excited by pseudo-spin-polarized boundary states. In addition to the fundamental interest in the structure of these pseudo-relativistic orbitals, the proposed system offers a route for designing new types of nanophotonic devices, spin-full resonators and topological light sources compatible with integrated photonics platforms.

6.
Nanomaterials (Basel) ; 11(6)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200237

ABSTRACT

We propose and demonstrate both flexible and stretchable blue light-emitting diodes based on core/shell InGaN/GaN quantum well microwires embedded in polydimethylsiloxane membranes with strain-insensitive transparent electrodes involving single-walled carbon nanotubes. InGaN/GaN core-shell microwires were grown by metal-organic vapor phase epitaxy, encapsulated into a polydimethylsiloxane film, and then released from the growth substrate. The fabricated free-standing membrane of light-emitting diodes with contacts of single-walled carbon nanotube films can stand up to 20% stretching while maintaining efficient operation. Membrane-based LEDs show less than 15% degradation of electroluminescence intensity after 20 cycles of stretching thus opening an avenue for highly deformable inorganic devices.

7.
Nat Commun ; 12(1): 3746, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34145288

ABSTRACT

Nonreciprocity and nonreciprocal optical devices play a vital role in modern photonic technologies by enforcing one-way propagation of light. Here, we demonstrate an all-optical approach to nonreciprocity based on valley-selective response in transition metal dichalcogenides (TMDs). This approach overcomes the limitations of magnetic materials and it does not require an external magnetic field. We provide experimental evidence of photoinduced nonreciprocity in a monolayer WS2 pumped by circularly polarized (CP) light. Nonreciprocity stems from valley-selective exciton population, giving rise to nonlinear circular dichroism controlled by CP pump fields. Our experimental results reveal a significant effect even at room temperature, despite considerable intervalley-scattering, showing promising potential for practical applications in magnetic-free nonreciprocal platforms. As an example, here we propose a device scheme to realize an optical isolator based on a pass-through silicon nitride (SiN) ring resonator integrating the optically biased TMD monolayer.

8.
Nanomaterials (Basel) ; 10(7)2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32635393

ABSTRACT

In this article, we present the pick-and-place technique for the manipulation of single nanoparticles on non-conductive substrates using a tungsten tip irradiated by a focused electron beam from a scanning electron microscope. The developed technique allowed us to perform the precise transfer of single BaTiO3 nanoparticles from one substrate to another in order to carry out measurements of elastic light scattering as well as second harmonic generation. Also, we demonstrate a fabricated structure made by finely tuning the position of a BaTiO3 nanoparticle on top of a dielectric nanowaveguide deposited on a glass substrate. The presented technique is based on the electrostatic interaction between the sharp tungsten tip charged by the electron beam and the nanoscale object. A mechanism for nanoparticle transfer to a non-conductive substrate is proposed and the forces involved in the manipulation process are evaluated. The presented technique can be widely utilized for the fabrication of nanoscale structures on optically transparent non-conductive substrates, which presents a wide range of applications for nanophotonics.

9.
Nano Lett ; 19(2): 877-884, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30605602

ABSTRACT

We combine the field confinement of plasmonics with the flexibility of multiple Mie resonances by bottom-up assembly of hybrid metal-dielectric nanodimers. We investigate the electromagnetic coupling between nanoparticles in heterodimers consisting of gold and barium titanate (BaTiO3 or BTO) nanoparticles through nonlinear second-harmonic spectroscopy and polarimetry. The overlap of the localized surface plasmon resonant dipole mode of the gold nanoparticle with the dipole and higher-order Mie resonant modes in the BTO nanoparticle lead to the formation of hybridized modes in the visible spectral range. We employ the pick-and-place technique to construct the hybrid nanodimers with controlled diameters by positioning the nanoparticles of different types next to each other under a scanning electron microscope. Through linear scattering spectroscopy, we observe the formation of hybrid modes in the nanodimers. We show that the modes can be directly accessed by measuring the dependence of the second-harmonic generation (SHG) signal on the polarization and wavelength of the pump. We reveal both experimentally and theoretically that the hybridization of plasmonic and Mie-resonant modes leads to a strong reshaping of the SHG polarization dependence in the nanodimers, which depends on the pump wavelength. We compare the SHG signal of each hybrid nanodimer with the SHG signal of single BTO nanoparticles to estimate the enhancement factor due to the resonant mode coupling within the nanodimers. We report up to 2 orders of magnitude for the SHG signal enhancement compared with isolated BTO nanoparticles.

10.
ACS Appl Mater Interfaces ; 11(1): 1040-1048, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30540432

ABSTRACT

Inorganic cesium lead halide perovskite nanowires, generating laser emission in the broad spectral range at room temperature and low threshold, have become powerful tools for the cutting-edge applications in the optoelectronics and nanophotonics. However, to achieve high-quality nanowires with the outstanding optical properties, it was necessary to employ long-lasting and costly methods of their synthesis, as well as postsynthetic separation and transfer procedures that are not convenient for large-scale production. Here we report a novel approach to fabricate high-quality CsPbBr3 nanolasers obtained by rapid precipitation from dimethyl sulfoxide solution sprayed onto hydrophobic substrates at ambient conditions. The synthesis technique allows producing the well-separated nanowires with a broad size distribution of 2-50 µm in 5-7 min, being the fastest method to the best of our knowledge. The formation of nanowires occurs via ligand-assisted reprecipitation triggered by intermolecular proton transfer from (CH3)2CHOH to H2O in the presence of a minor amount of water. The XRD patterns confirm an orthorhombic crystal structure of the as-grown CsPbBr3 single nanowires. Scanning electron microscopy images reveal their regular shape and truncated pyramidal end facets, while high-resolution transmission electron microscopy ones demonstrate their single-crystal structure. The lifetime of excitonic emission of the nanowires is found to be 7 ns, when the samples are excited with energy below the lasing threshold, manifesting the low concentration of defect states. The measured nanolasers of different lengths exhibit pronounced stimulated emission above 13 µJ cm-2 excitation threshold with quality factor Q = 1017-6166. Their high performance is assumed to be related to their monocrystalline structure, low concentration of defect states, and improved end facet reflectivity.

11.
Nano Lett ; 18(9): 5522-5529, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30071168

ABSTRACT

Halide perovskites are known to support excitons at room temperatures with high quantum yield of luminescence that make them attractive for all-dielectric resonant nanophotonics and meta-optics. Here we report the observation of broadly tunable Fano resonances in halide perovskite nanoparticles originating from the coupling of excitons to the Mie resonances excited in the nanoparticles. Signatures of the photon-exciton (" hybrid") Fano resonances are observed in dark-field spectra of isolated nanoparticles, and also in the extinction spectra of aperiodic lattices of such nanoparticles. In the latter case, chemical tunability of the exciton resonance allows reversible tuning of the Fano resonance across the 100 nm bandwidth in the visible frequency range, providing a novel approach to control optical properties of perovskite nanostructures. The proposed method of chemical tuning paves the way to an efficient control of emission properties of on-chip-integrated light-emitting nanoantennas.

SELECTION OF CITATIONS
SEARCH DETAIL
...