Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 153(12): 3382-3396, 2023 12.
Article in English | MEDLINE | ID: mdl-37660953

ABSTRACT

BACKGROUND: Maternal vitamin B12 deficiency plays a vital role in fetal programming, as corroborated by previous studies on murine models and longitudinal human cohorts. OBJECTIVES: This study assessed the effects of diet-induced maternal vitamin B12 deficiency on F1 offspring in terms of cardiometabolic health and normalization of these effects by maternal-periconceptional vitamin B12 supplementation. METHODS: A diet-induced maternal vitamin B12 deficient Wistar rat model was generated in which female rats were either fed a control AIN-76A diet (with 0.01 g/kg vitamin B12) or the same diet with vitamin B12 removed. Females from the vitamin B12-deficient group were mated with males on the control diet. A subset of vitamin B12-deficient females was repleted with vitamin B12 on day 1 of conception. The offspring in the F1 generation were assessed for changes in body composition, plasma biochemistry, and molecular changes in the liver. A multiomics approach was used to obtain a mechanistic insight into the changes in the offspring liver. RESULTS: We showed that a 36% reduction in plasma vitamin B12 levels during pregnancy in F0 females can lead to continued vitamin B12 deficiency (60%-70% compared with control) in the F1 offspring and program them for cardiometabolic adversities. These adversities, such as high triglycerides and low high-density lipoprotein cholesterol, were seen only among F1 males but not females. DNA methylome analysis of the liver of F1 3-mo-old offspring highlights sexual dimorphism in the alteration of methylation status of genes critical to signaling processes. Proteomics and targeted metabolomics analysis confirm that sex-specific alterations occur through modulations in PPAR signaling and steroid hormone biosynthesis pathway. Repletion of deficient mothers with vitamin B12 at conception normalizes most of the molecular and biochemical changes. CONCLUSIONS: Maternal vitamin B12 deficiency has a programming effect on the next generation and increases the risk for cardiometabolic syndrome in a sex-specific manner. Normalization of the molecular risk markers on vitamin B12 supplementation indicates a causal role.


Subject(s)
Cardiovascular Diseases , Vitamin B 12 Deficiency , Pregnancy , Male , Humans , Rats , Animals , Female , Mice , Rats, Wistar , Vitamin B 12 Deficiency/metabolism , Vitamin B 12 , Reproduction , Cardiovascular Diseases/etiology
2.
Mol Cell Biochem ; 468(1-2): 83-96, 2020 May.
Article in English | MEDLINE | ID: mdl-32189172

ABSTRACT

Vitamin B12 deficiency is a critical problem worldwide and peri-conceptional deficiency of this vitamin is associated with the risk of complex cardio-metabolic diseases. Nutritional perturbations during these stages of development may lead to changes in the fetal epigenome. Using Wistar rat model system, we have earlier shown that low maternal B12 levels are associated with low birth weight, adiposity, insulin resistance, and increased triglyceride levels in the offspring, which might predispose them to the risk of cardio-metabolic diseases in adulthood. In this study, we have investigated the effects of maternal B12 deficiency on genome-wide DNA methylation profile of the offspring and the effect of rehabilitation of mothers with B12 at conception. We have performed methylated DNA immunoprecipitation sequencing of liver from pups in four groups of Wistar rats: Control (C), B12-restricted (B12R), B12-rehabilitated at conception (B12RC), and B12-rehabilitated at parturition (B12RP). We have analyzed differentially methylated signatures between the three groups as compared to controls. We have identified a total of 214 hypermethylated and 142 hypomethylated regions in the 10 kb upstream region of transcription start site in pups of B12-deficient mothers, which are enriched in genes involved in fatty acid metabolism and mitochondrial transport/metabolism. B12 rehabilitation at conception and parturition is responsible for reversal of methylation status of many of these regions to control levels suggesting a causal association with metabolic phenotypes. Thus, maternal B12 restriction alters DNA methylation of genes involved in important metabolic processes and influences the offspring phenotype, which is reversed by B12 rehabilitation of mothers at conception.


Subject(s)
DNA Methylation , Liver/metabolism , Prenatal Exposure Delayed Effects/metabolism , Vitamin B 12 Deficiency , Vitamin B 12/metabolism , Animals , Animals, Newborn , CpG Islands/genetics , Fatty Acids/genetics , Fatty Acids/metabolism , Female , High-Throughput Nucleotide Sequencing , Immunoprecipitation , Insulin Resistance/genetics , Male , Mitochondria/genetics , Mitochondria/metabolism , Obesity/metabolism , Phenotype , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Rats , Rats, Wistar , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...