Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; : e2301461, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38243881

ABSTRACT

This research examines vanadium-deficient V2 C MXene, a two-dimensional (2D) vanadium carbide with exceptional electrochemical properties for rechargeable zinc-ion batteries. Through a meticulous etching process, a V-deficient, porous architecture with an expansive surface area is achieved, fostering three-dimensional (3D) diffusion channels and boosting zinc ion storage. Analytical techniques like scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller, and X-ray diffraction confirm the formation of V2 C MXene and its defective porous structure. X-ray photoelectron spectroscopy further verifies its transformation from the MAX phase to MXene, noting an increase in V3+ and V4+ states with etching. Cyclic voltammetry reveals superior de-zincation kinetics, evidenced by consistent V3+ /V4+ oxidation peaks at varied scanning rates. Overall, this V-deficient MXene outperforms raw MXenes in capacity and rate, although its capacity diminishes over extended cycling due to structural flaws. Theoretical analyses suggest conductivity rises with vacancies, enhancing 3D ionic diffusion as vacancy size grows. This work sheds light on enhancing V-based MXene structures for optimized zinc-ion storage.

SELECTION OF CITATIONS
SEARCH DETAIL