Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Pharm Sci ; 112(10): 2676-2684, 2023 10.
Article in English | MEDLINE | ID: mdl-37364771

ABSTRACT

NDec is a novel combination of oral decitabine and tetrahydrouridine that is currently under clinical development for the treatment of sickle cell disease (SCD). Here, we investigate the potential for the tetrahydrouridine component of NDec to act as an inhibitor or substrate of key concentrative nucleoside transporters (CNT1-3) and equilibrative nucleoside transporters (ENT1-2). Nucleoside transporter inhibition and tetrahydrouridine accumulation assays were performed using Madin-Darby canine kidney strain II (MDCKII) cells overexpressing human CNT1, CNT2, CNT3, ENT1, and ENT2 transporters. Results showed that tetrahydrouridine did not influence CNT- or ENT-mediated uridine/adenosine accumulation in MDCKII cells at the concentrations tested (25 and 250 µM). Accumulation of tetrahydrouridine in MDCKII cells was initially shown to be mediated by CNT3 and ENT2. However, while time- and concentration-dependence experiments showed active accumulation of tetrahydrouridine in CNT3-expressing cells, allowing for estimation of Km (3,140 µM) and Vmax (1,600 pmol/mg protein/min), accumulation of tetrahydrouridine was not observed in ENT2-expressing cells. Potent CNT3 inhibitors are a class of drugs not generally prescribed to patients with SCD, except in certain specific circumstances. These data suggest that NDec can be administered safely with drugs that act as substrates and inhibitors of the nucleoside transporters included in this study.


Subject(s)
Nucleoside Transport Proteins , Nucleosides , Humans , Animals , Dogs , Tetrahydrouridine , Equilibrative Nucleoside Transporter 1 , Membrane Transport Proteins
2.
Cardiovasc Res ; 117(13): 2639-2651, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34117866

ABSTRACT

AIMS: Interleukin-1ß (IL-1ß) is an important pathogenic factor in cardiovascular diseases including chronic heart failure (HF). The CANTOS trial highlighted that inflammasomes as primary sources of IL-1 ß are promising new therapeutic targets in cardiovascular diseases. Therefore, we aimed to assess inflammasome activation in failing hearts to identify activation patterns of inflammasome subtypes as sources of IL-1ß. METHODS AND RESULTS: Out of the four major inflammasome sensors tested, expression of the inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) increased in human HF regardless of the aetiology (ischaemic or dilated cardiomyopathy), while the NLRP1/NALP1 and NLRP3 (NLR family, pyrin domain containing 1 and 3) inflammasome showed no change in HF samples. AIM2 expression was primarily detected in monocytes/macrophages of failing hearts. Translational animal models of HF (pressure or volume overload, and permanent coronary artery ligation in rat, as well as ischaemia/reperfusion-induced HF in pigs) demonstrated activation pattern of AIM2 similar to that of observed in end-stages of human HF. In vitro AIM2 inflammasome activation in human Tohoku Hospital Pediatrics-1 (THP-1) monocytic cells and human AC16 cells was significantly reduced by pharmacological blockade of pannexin-1 channels by the clinically used uricosuric drug probenecid. Probenecid was also able to reduce pressure overload-induced mortality and restore indices of disease severity in a rat chronic HF model in vivo. CONCLUSIONS: This is the first report showing that AIM2 and NLRC4 inflammasome activation contribute to chronic inflammation in HF and that probenecid alleviates chronic HF by reducing inflammasome activation. The present translational study suggests the possibility of repositioning probenecid for HF indications.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , Heart Failure/metabolism , Inflammasomes/metabolism , Myocytes, Cardiac/metabolism , Receptors, Cell Surface/metabolism , Adolescent , Adult , Aged , Animals , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/immunology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/immunology , Case-Control Studies , Connexins/antagonists & inhibitors , Connexins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Disease Models, Animal , Female , Heart Failure/drug therapy , Heart Failure/immunology , Heart Failure/physiopathology , Humans , Inflammasomes/immunology , Male , Middle Aged , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/immunology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Probenecid/pharmacology , Rats, Wistar , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Signal Transduction , Sus scrofa , THP-1 Cells , Ventricular Function, Left , Young Adult
3.
Int J Mol Sci ; 21(6)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244869

ABSTRACT

Little is known about the mechanism of prediabetes-induced cardiac dysfunction. Therefore, we aimed to explore key molecular changes with transcriptomic and bioinformatics approaches in a prediabetes model showing heart failure with preserved ejection fraction phenotype. To induce prediabetes, Long-Evans rats were fed a high-fat diet for 21 weeks and treated with a single low-dose streptozotocin at week 4. Small RNA-sequencing, in silico microRNA (miRNA)-mRNA target prediction, Gene Ontology analysis, and target validation with qRT-PCR were performed in left ventricle samples. From the miRBase-annotated 752 mature miRNA sequences expression of 356 miRNAs was detectable. We identified two upregulated and three downregulated miRNAs in the prediabetic group. We predicted 445 mRNA targets of the five differentially expressed miRNAs and selected 11 mRNAs targeted by three differentially expressed miRNAs, out of which five mRNAs were selected for validation. Out of these five targets, downregulation of three mRNAs i.e., Juxtaposed with another zinc finger protein 1 (Jazf1); RAP2C, member of RAS oncogene family (Rap2c); and Zinc finger with KRAB and SCAN domains 1 (Zkscan1) were validated. This is the first demonstration that prediabetes alters cardiac miRNA expression profile. Predicted targets of differentially expressed miRNAs include Jazf1, Zkscan1, and Rap2c mRNAs. These transcriptomic changes may contribute to the diastolic dysfunction and may serve as drug targets.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , Myocardium/metabolism , Prediabetic State/genetics , Animals , Computational Biology , Disease Models, Animal , Down-Regulation/genetics , Gene Expression Profiling , Gene Ontology , Gene Regulatory Networks , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Long-Evans , Reproducibility of Results , Up-Regulation/genetics
4.
Int J Mol Sci ; 20(17)2019 08 30.
Article in English | MEDLINE | ID: mdl-31480394

ABSTRACT

Feeding rats with high-fat diet (HFD) with a single streptozotocin (STZ) injection induced obesity, slightly elevated fasting blood glucose and impaired glucose and insulin tolerance, and caused cardiac hypertrophy and mild diastolic dysfunction as published before by Koncsos et al. in 2016. Here we aimed to explore the renal consequences in the same groups of rats. Male Long-Evans rats were fed normal chow (CON; n = 9) or HFD containing 40% lard and were administered STZ at 20 mg/kg (i.p.) at week four (prediabetic rats, PRED, n = 9). At week 21 blood and urine samples were taken and kidney and liver samples were collected for histology, immunohistochemistry and for analysis of gene expression. HFD and STZ increased body weight and visceral adiposity and plasma leptin concentration. Despite hyperleptinemia, plasma C-reactive protein concentration decreased in PRED rats. Immunohistochemistry revealed elevated collagen IV protein expression in the glomeruli, and Lcn2 mRNA expression increased, while Il-1ß mRNA expression decreased in both the renal cortex and medulla in PRED vs. CON rats. Kidney histology, urinary protein excretion, plasma creatinine, glomerular Feret diameter, desmin protein expression, and cortical and medullary mRNA expression of TGF-ß1, Nrf2, and PPARγ were similar in CON and PRED rats. Reduced AMPKα phosphorylation of the autophagy regulator Akt was the first sign of liver damage, while plasma lipid and liver enzyme concentrations were similar. In conclusion, glomerular collagen deposition and increased lipocalin-2 expression were the early signs of kidney injury, while most biomarkers of inflammation, oxidative stress and fibrosis were negative in the kidneys of obese, prediabetic rats with mild heart and liver injury.


Subject(s)
Collagen/metabolism , Kidney Glomerulus/injuries , Kidney Glomerulus/metabolism , Lipocalin-2/metabolism , Obesity/metabolism , Prediabetic State/metabolism , Adipose Tissue/metabolism , Animals , Biomarkers/metabolism , Body Weight , Diet, High-Fat , Fibrosis , Gene Expression Regulation , Inflammation/genetics , Inflammation/pathology , Kidney Glomerulus/pathology , Lipids/blood , Liver/enzymology , Liver/pathology , Liver/physiopathology , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/blood , Oxidative Stress/genetics , Phosphorylation , Phosphoserine/metabolism , Prediabetic State/blood , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Long-Evans , Streptozocin
5.
Front Physiol ; 10: 889, 2019.
Article in English | MEDLINE | ID: mdl-31354526

ABSTRACT

Background: Recent evidences suggest that sex hormones may be involved in the regulation of exercise-induced left ventricular (LV) hypertrophy. However, the sex-specific functional consequences of exercise-induced myocardial hypertrophy is still not investigated in detail. We aimed at understanding the sex-specific functional and morphological alterations in the LV and the underlying molecular changes in a rat model of athlete's heart. Methods: We divided our young, adult male and female rats into control and exercised groups. Athlete's heart was induced by a 12-week long swim training. Following the training period, we assessed LV hypertrophy with echocardiography, while pressure-volume analysis was performed to investigate in vivo LV function. After in vivo experiments, molecular biological studies and histological investigations were performed. Results: Echocardiography and post-mortem measured heart weight data indicated LV hypertrophy in both genders, nevertheless it was more pronounced in females. Despite the more significant relative hypertrophy in females, characteristic functional parameters did not show notable differences between the genders. LV pressure-volume analysis showed increased stroke volume, improved contractility and stroke work and unaltered LV stiffness in both male and female exercised rats, while active relaxation was ameliorated solely in male animals. The induction of Akt signaling was more significant in females compared to males. There was also a characteristic difference in the mitogen-activated protein kinase pathway as suppressed phosphorylation of p44/42 MAPK (Erk) and mTOR was observed in female exercised rats, but not in male ones. Myosin heavy chain α (MHC)/ß-MHC ratio did not differ in males, but increased markedly in females. Conclusion: Our results confirm that there is a more pronounced exercise-induced LV hypertrophy in females as compared to the males, however, there are only minor differences regarding LV function. There are characteristic molecular differences between male and female animals, that can explain different degrees of LV hypertrophy.

6.
Br J Pharmacol ; 175(18): 3713-3726, 2018 09.
Article in English | MEDLINE | ID: mdl-29971762

ABSTRACT

BACKGROUND AND PURPOSE: Incidence and severity of obesity are increasing worldwide, however, efficient and safe pharmacological treatments are not yet available. Certain MAO inhibitors reduce body weight, although their effects on metabolic parameters have not been investigated. Here, we have assessed effects of a widely used, selective MAO-B inhibitor, selegiline, on metabolic parameters in a rat model of diet-induced obesity. EXPERIMENTAL APPROACH: Male Long-Evans rats were given control (CON) or a high-fat (20%), high-sucrose (15%) diet (HFS) for 25 weeks. From week 16, animals were injected s.c. with 0.25 mg·kg-1 selegiline (CON + S and HFS + S) or vehicle (CON, HFS) once daily. Whole body, subcutaneous and visceral fat was measured by CT, and glucose and insulin tolerance were tested. Expression of glucose transporters and chemokines was assessed by quantitative RT-PCR. KEY RESULTS: Selegiline decreased whole body fat, subcutaneous- and visceral adiposity, measured by CT and epididymal fat weight in the HFS group, compared with HFS placebo animals, without influencing body weight. Oral glucose tolerance and insulin tolerance tests showed impaired glucose homeostasis in HFS and HFS + S groups, although insulin levels in plasma and pancreas were unchanged. HFS induced expression of Srebp-1c, Glut1 and Ccl3 in adipose tissue, which were alleviated by selegiline. CONCLUSIONS AND IMPLICATIONS: Selegiline reduced adiposity, changes in adipose tissue energy metabolism and adipose inflammation induced by HFS diet without affecting the increased body weight, impairment of glucose homeostasis, or behaviour. These results suggest that selegiline could mitigate harmful effects of visceral adiposity.


Subject(s)
Adiposity/drug effects , Diet, High-Fat , Dietary Sucrose/administration & dosage , Monoamine Oxidase Inhibitors/pharmacology , Selegiline/pharmacology , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Blood Pressure/drug effects , Body Weight/drug effects , Chemokine CCL3/genetics , Energy Intake , Glucose/metabolism , Glucose Transporter Type 1/genetics , Lipid Metabolism/drug effects , Male , Membrane Proteins/genetics , Organ Size/drug effects , Rats , Rats, Long-Evans , Sterol Regulatory Element Binding Protein 1/genetics , Systole
7.
Article in English | MEDLINE | ID: mdl-29378341

ABSTRACT

INTRODUCTION: In the heart, subsarcolemmal (SSM), interfibrillar (IFM) and perinuclear mitochondria represent three subtypes of mitochondria. The most commonly used protease during IFM isolation is the nagarse, however, its effect on the detection of mitochondrial proteins is still unclear. Therefore, we investigated whether nagarse treatment influences the quantification of mitochondrial proteins. METHODS: SSM and IFM were isolated from hearts of mice and rats. During IFM isolation, nagarse activity was either stopped by centrifugation (common protocol, IFM+N) or inhibited by phenylmethylsulfonyl fluoride (PMSF, IFM+N+I). The amounts of proteins located in different mitochondrial compartments (outer membrane: mitofusin 1 (MFN1) and 2 (MFN2); intermembrane space: p66shc; inner membrane (connexin 43 (Cx43)), and of protein deglycase DJ-1 were determined by Western blot. RESULTS: MFN2 and Cx43 were found predominantly in SSM isolated from mouse and rat hearts. MFN1 and p66shc were present in similar amounts in SSM and IFM+N, whereas the level of DJ-1 was higher in IFM+N compared to SSM. In IFM+N+I samples from mice, the amount of MFN2, but not that of Cx43 increased. Nagarse or nagarse inhibition by PMSF had no effect on oxygen consumption of SSM or IFM. DISCUSSION: Whereas the use of the common protocol indicates the localization of MFN2 predominantly in SSM, the inhibition of nagarse by PMSF increases the signal of MFN2 in IFM to that of in SSM, indicating an underestimation of MFN2 in IFM. Therefore, protease sensitivity should be considered when assessing distribution of mitochondrial proteins using nagarse-based isolation.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proteins/analysis , Subtilisins/metabolism , Animals , Cell Fractionation/methods , Male , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Models, Animal , Myocardium/cytology , Oxygen Consumption/drug effects , Phenylmethylsulfonyl Fluoride/pharmacology , Pilot Projects , Proteomics/methods , Rats , Rats, Long-Evans , Rats, Wistar
8.
Biochim Biophys Acta Bioenerg ; 1859(3): 201-214, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29273412

ABSTRACT

Microglia are highly dynamic cells in the brain. Their functional diversity and phenotypic versatility brought microglial energy metabolism into the focus of research. Although it is known that microenvironmental cues shape microglial phenotype, their bioenergetic response to local nutrient availability remains unclear. In the present study effects of energy substrates on the oxidative and glycolytic metabolism of primary - and BV-2 microglial cells were investigated. Cellular oxygen consumption, glycolytic activity, the levels of intracellular ATP/ADP, autophagy, mTOR phosphorylation, apoptosis and cell viability were measured in the absence of nutrients or in the presence of physiological energy substrates: glutamine, glucose, lactate, pyruvate or ketone bodies. All of the oxidative energy metabolites increased the rate of basal and maximal respiration. However, the addition of glucose decreased microglial oxidative metabolism and glycolytic activity was enhanced. Increased ATP/ADP ratio and cell viability, activation of the mTOR and reduction of autophagic activity were observed in glutamine-supplemented media. Moreover, moderate and transient oxidation of ketone bodies was highly enhanced by glutamine, suggesting that anaplerosis of the TCA-cycle could stimulate ketone body oxidation. It is concluded that microglia show high metabolic plasticity and utilize a wide range of substrates. Among them glutamine is the most efficient metabolite. To our knowledge these data provide the first account of microglial direct metabolic response to nutrients under short-term starvation and demonstrate that microglia exhibit versatile metabolic machinery. Our finding that microglia have a distinct bioenergetic profile provides a critical foundation for specifying microglial contributions to brain energy metabolism.


Subject(s)
Energy Metabolism/physiology , Glucose/metabolism , Glutamine/metabolism , Lactates/metabolism , Microglia/metabolism , Pyruvates/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Animals, Newborn , Apoptosis/drug effects , Autophagy/drug effects , Cell Line , Cells, Cultured , Energy Metabolism/drug effects , Female , Glucose/pharmacology , Glutamine/pharmacology , Glycolysis/drug effects , Lactates/pharmacology , Male , Mice , Microglia/cytology , Microglia/drug effects , Oxygen Consumption/drug effects , Pyruvates/pharmacology
9.
Front Physiol ; 8: 935, 2017.
Article in English | MEDLINE | ID: mdl-29204124

ABSTRACT

Increased oxidative stress is a major contributor to the development and progression of heart failure, however, our knowledge on the role of the distinct NADPH oxidase (NOX) isoenzymes, especially on NOX4 is controversial. Therefore, we aimed to characterize NOX4 expression in human samples from healthy and failing hearts. Explanted human heart samples (left and right ventricular, and septal regions) were obtained from patients suffering from heart failure of ischemic or dilated origin. Control samples were obtained from donor hearts that were not used for transplantation. Deep RNA sequencing of the cardiac transcriptome indicated extensive alternative splicing of the NOX4 gene in heart failure as compared to samples from healthy donor hearts. Long distance PCR analysis with a universal 5'-3' end primer pair, allowing amplification of different splice variants, confirmed the presence of the splice variants. To assess translation of the alternatively spliced transcripts we determined protein expression of NOX4 by using a specific antibody recognizing a conserved region in all variants. Western blot analysis showed up-regulation of the full-length NOX4 in ischemic cardiomyopathy samples and confirmed presence of shorter isoforms both in control and failing samples with disease-associated expression pattern. We describe here for the first time that NOX4 undergoes extensive alternative splicing in human hearts which gives rise to the expression of different enzyme isoforms. The full length NOX4 is significantly upregulated in ischemic cardiomyopathy suggesting a role for NOX4 in ROS production during heart failure.

10.
Life Sci ; 186: 11-16, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28778689

ABSTRACT

AIMS: Chloramphenicol (CAP), a broad spectrum antibiotic, was shown to protect the heart against ischemia/reperfusion (I/R) injury. CAP also induces autophagy, however, it is not known whether CAP-induced cardioprotection is mediated by autophagy. Therefore, here we aimed to assess whether activation of autophagy is required for the infarct size limiting effect of CAP and to identify which component of CAP-induced autophagy contributes to cardioprotection against I/R injury. MAIN METHODS: Hearts of Sprague-Dawley rats were perfused in Langendorff mode with Krebs-Henseleit solution containing either vehicle (CON), 300µM CAP (CAP), CAP and an inhibitor of autophagosome-lysosome fusion chloroquine (CAP+CQ), or an inhibitor of autophagosome formation, the functional null mutant TAT-HA-Atg5K130R protein (CAP+K130R), and K130R or CQ alone, respectively. After 35min of aerobic perfusion, hearts were subjected to 30min global ischemia and 2h reperfusion. Autophagy was determined by immunoblot against LC3 from left atrial tissue. Infarct size was measured by TTC staining, coronary flow was measured, and the release of creatine kinase (CK) was assessed from the coronary effluent. KEY FINDINGS: CAP treatment induced autophagy, increased phosphorylation of Erk1/2 in the myocardium and significantly reduced infarct size and CK release. Autophagy inhibitor TAT-HA-Atg5K130R abolished cardioprotection by CAP, while in CAP+CQ hearts infarct size and CK release were reduced similarly to as seen in the CAP-treated group. CONCLUSION: This is the first demonstration that autophagosome formation but not autophagosomal clearance is required for CAP-induced cardioprotection. SIGNIFICANCE: Inducing autophagy sequestration might yield novel therapeutic options against acute ischemia/reperfusion injury.


Subject(s)
Autophagosomes/drug effects , Autophagy/drug effects , Cardiotonic Agents/therapeutic use , Chloramphenicol/therapeutic use , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/drug therapy , Animals , Autophagosomes/metabolism , Autophagosomes/pathology , Cardiotonic Agents/administration & dosage , Chloramphenicol/administration & dosage , Coronary Circulation/drug effects , In Vitro Techniques , MAP Kinase Signaling System/drug effects , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Pilot Projects , Rats, Sprague-Dawley
12.
J Transl Med ; 15(1): 67, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28364777

ABSTRACT

BACKGROUND: Cardioprotective value of ischemic post- (IPostC), remote (RIC) conditioning in acute myocardial infarction (AMI) is unclear in clinical trials. To evaluate cardioprotection, most translational animal studies and clinical trials utilize necrotic tissue referred to the area at risk (AAR) by magnetic resonance imaging (MRI). However, determination of AAR by MRI' may not be accurate, since MRI-indices of microvascular damage, i.e., myocardial edema and microvascular obstruction (MVO), may be affected by cardioprotection independently from myocardial necrosis. Therefore, we assessed the effect of IPostC, RIC conditioning and ischemic preconditioning (IPreC; positive control) on myocardial necrosis, edema and MVO in a clinically relevant, closed-chest pig model of AMI. METHODS AND RESULTS: Acute myocardial infarction was induced by a 90-min balloon occlusion of the left anterior descending coronary artery (LAD) in domestic juvenile female pigs. IPostC (6 × 30 s ischemia/reperfusion after 90-min occlusion) and RIC (4 × 5 min hind limb ischemia/reperfusion during 90-min LAD occlusion) did not reduce myocardial necrosis as assessed by late gadolinium enhancement 3 days after reperfusion and by ex vivo triphenyltetrazolium chloride staining 3 h after reperfusion, however, the positive control, IPreC (3 × 5 min ischemia/reperfusion before 90-min LAD occlusion) did. IPostC and RIC attenuated myocardial edema as measured by cardiac T2-weighted MRI 3 days after reperfusion, however, AAR measured by Evans blue staining was not different among groups, which confirms that myocardial edema is not a measure of AAR, IPostC and IPreC but not RIC decreased MVO. CONCLUSION: We conclude that IPostC and RIC interventions may protect the coronary microvasculature even without reducing myocardial necrosis.


Subject(s)
Cardiotonic Agents/metabolism , Ischemic Postconditioning , Ischemic Preconditioning, Myocardial , Magnetic Resonance Imaging/methods , Microvessels/pathology , Myocardial Reperfusion Injury/diagnosis , Animals , Edema/pathology , Electrocardiography , Female , Heart Function Tests , Hemodynamics , Myocardial Reperfusion Injury/diagnostic imaging , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Necrosis , Staining and Labeling , Sus scrofa
13.
Lipids Health Dis ; 16(1): 60, 2017 Mar 23.
Article in English | MEDLINE | ID: mdl-28330474

ABSTRACT

BACKGROUND: We have previously shown that efficiency of ischemic conditioning is diminished in hypercholesterolemia and that autophagy is necessary for cardioprotection. However, it is unknown whether isolated hypercholesterolemia disturbs autophagy or the mammalian target of rapamycin (mTOR) pathways. Therefore, we investigated whether isolated hypercholesterolemia modulates cardiac autophagy-related pathways or programmed cell death mechanisms such as apoptosis and necroptosis in rat heart. METHODS: Male Wistar rats were fed either normal chow (NORM; n = 9) or with 2% cholesterol and 0.25% cholic acid-enriched diet (CHOL; n = 9) for 12 weeks. CHOL rats exhibited a 41% increase in plasma total cholesterol level over that of NORM rats (4.09 mmol/L vs. 2.89 mmol/L) at the end of diet period. Animals were sacrificed, hearts were excised and briefly washed out. Left ventricles were snap-frozen for determination of markers of autophagy, mTOR pathway, apoptosis, and necroptosis by Western blot. RESULTS: Isolated hypercholesterolemia was associated with a significant reduction in expression of cardiac autophagy markers such as LC3-II, Beclin-1, Rubicon and RAB7 as compared to controls. Phosphorylation of ribosomal S6, a surrogate marker for mTOR activity, was increased in CHOL samples. Cleaved caspase-3, a marker of apoptosis, increased in CHOL hearts, while no difference in the expression of necroptotic marker RIP1, RIP3 and MLKL was detected between treatments. CONCLUSIONS: This is the first comprehensive analysis of autophagy and programmed cell death pathways of apoptosis and necroptosis in hearts of hypercholesterolemic rats. Our data show that isolated hypercholesterolemia suppresses basal cardiac autophagy and that the decrease in autophagy may be a result of an activated mTOR pathway. Reduced autophagy was accompanied by increased apoptosis, while cardiac necroptosis was not modulated by isolated hypercholesterolemia. Decreased basal autophagy and elevated apoptosis may be responsible for the loss of cardioprotection reported in hypercholesterolemic animals.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Cholesterol/adverse effects , Cholic Acid/adverse effects , Hypercholesterolemia/metabolism , Animals , Beclin-1/genetics , Beclin-1/metabolism , Biomarkers/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Cholesterol/administration & dosage , Cholic Acid/administration & dosage , Diet, High-Fat/adverse effects , Gene Expression Regulation/drug effects , Heart/drug effects , Hypercholesterolemia/etiology , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , Male , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Necrosis/etiology , Necrosis/genetics , Necrosis/metabolism , Necrosis/pathology , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Rats , Rats, Wistar , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Ribosomal Protein S6 Kinases/genetics , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
14.
Am J Physiol Heart Circ Physiol ; 311(4): H927-H943, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27521417

ABSTRACT

Although incidence and prevalence of prediabetes are increasing, little is known about its cardiac effects. Therefore, our aim was to investigate the effect of prediabetes on cardiac function and to characterize parameters and pathways associated with deteriorated cardiac performance. Long-Evans rats were fed with either control or high-fat chow for 21 wk and treated with a single low dose (20 mg/kg) of streptozotocin at week 4 High-fat and streptozotocin treatment induced prediabetes as characterized by slightly elevated fasting blood glucose, impaired glucose and insulin tolerance, increased visceral adipose tissue and plasma leptin levels, as well as sensory neuropathy. In prediabetic animals, a mild diastolic dysfunction was observed, the number of myocardial lipid droplets increased, and left ventricular mass and wall thickness were elevated; however, no molecular sign of fibrosis or cardiac hypertrophy was shown. In prediabetes, production of reactive oxygen species was elevated in subsarcolemmal mitochondria. Expression of mitofusin-2 was increased, while the phosphorylation of phospholamban and expression of Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3, a marker of mitophagy) decreased. However, expression of other markers of cardiac auto- and mitophagy, mitochondrial dynamics, inflammation, heat shock proteins, Ca2+/calmodulin-dependent protein kinase II, mammalian target of rapamycin, or apoptotic pathways were unchanged in prediabetes. This is the first comprehensive analysis of cardiac effects of prediabetes indicating that mild diastolic dysfunction and cardiac hypertrophy are multifactorial phenomena that are associated with early changes in mitophagy, cardiac lipid accumulation, and elevated oxidative stress and that prediabetes-induced oxidative stress originates from the subsarcolemmal mitochondria.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Hypertrophy, Left Ventricular/metabolism , Mitochondria, Heart/metabolism , Oxidative Stress , Prediabetic State/metabolism , Ventricular Dysfunction, Left/metabolism , Adipokines/metabolism , Adipose Tissue , Animals , Apoptosis , Autophagy , Body Composition , Calcium-Binding Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Diabetes Mellitus, Experimental/physiopathology , Diabetic Neuropathies , Diastole , Diet, High-Fat , Echocardiography , GTP Phosphohydrolases , Heat-Shock Proteins/metabolism , Hypertrophy, Left Ventricular/physiopathology , Male , Membrane Proteins/metabolism , Microscopy, Electron , Mitochondria, Heart/ultrastructure , Mitochondrial Proteins/metabolism , Mitophagy , Myocardium/metabolism , Myocardium/ultrastructure , Phosphorylation , Prediabetic State/physiopathology , Rats , Rats, Long-Evans , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Sarcolemma , TOR Serine-Threonine Kinases/metabolism , Ventricular Dysfunction, Left/physiopathology , Ventricular Pressure
15.
Cardiovasc Diabetol ; 14: 151, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26581389

ABSTRACT

BACKGROUND: Remote ischemic perconditioning (RIPerC) has a promising therapeutic insight to improve the prognosis of acute myocardial infarction. Chronic comorbidities such as diabetes are known to interfere with conditioning interventions by modulating cardioprotective signaling pathways, such as e.g., mTOR pathway and autophagy. However, the effect of acute hyperglycemia on RIPerC has not been studied so far. Therefore, here we investigated the effect of acute hyperglycemia on cardioprotection by RIPerC. METHODS: Wistar rats were divided into normoglycemic (NG) and acute hyperglycemic (AHG) groups. Acute hyperglycemia was induced by glucose infusion to maintain a serum glucose concentration of 15-20 mM throughout the experimental protocol. NG rats received mannitol infusion of an equal osmolarity. Both groups were subdivided into an ischemic (Isch) and a RIPerC group. Each group underwent reversible occlusion of the left anterior descending coronary artery (LAD) for 40 min in the presence or absence of acute hyperglycemia. After the 10-min LAD occlusion, RIPerC was induced by 3 cycles of 5-min unilateral femoral artery and vein occlusion and 5-min reperfusion. After 120 min of reperfusion, infarct size was measured by triphenyltetrazolium chloride staining. To study underlying signaling mechanisms, hearts were harvested for immunoblotting after 35 min in both the NG and AHG groups. RESULTS: Infarct size was significantly reduced by RIPerC in NG, but not in the AHG group (NG + Isch: 46.27 ± 5.31 % vs. NG + RIPerC: 24.65 ± 7.45 %, p < 0.05; AHG + Isch: 54.19 ± 4.07 % vs. 52.76 ± 3.80 %). Acute hyperglycemia per se did not influence infarct size, but significantly increased the incidence and duration of arrhythmias. Acute hyperglycemia activated mechanistic target of rapamycine (mTOR) pathway, as it significantly increased the phosphorylation of mTOR and S6 proteins and the phosphorylation of AKT. In spite of a decreased LC3II/LC3I ratio, other markers of autophagy, such as ATG7, ULK1 phopsphorylation, Beclin 1 and SQSTM1/p62, were not modulated by acute hyperglycemia. Furthermore, acute hyperglycemia significantly elevated nitrative stress in the heart (0.87 ± 0.01 vs. 0.50 ± 0.04 µg 3-nitrotyrosine/mg protein, p < 0.05). CONCLUSIONS: This is the first demonstration that acute hypreglycemia deteriorates cardioprotection by RIPerC. The mechanism of this phenomenon may involve an acute hyperglycemia-induced increase in nitrative stress and activation of the mTOR pathway.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Autophagy , Hyperglycemia/metabolism , Ischemic Preconditioning, Myocardial , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/pathology , Stress, Physiological , Animals , Apoptosis Regulatory Proteins/metabolism , Arrhythmias, Cardiac/etiology , Autophagy-Related Protein 7 , Autophagy-Related Protein-1 Homolog , Beclin-1 , Heat-Shock Proteins/metabolism , Hyperglycemia/complications , Intracellular Signaling Peptides and Proteins/metabolism , Myocardial Infarction/complications , Myocardial Reperfusion Injury/complications , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Sequestosome-1 Protein , Severity of Illness Index , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Ubiquitin-Activating Enzymes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...