Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(36): e2307334120, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37639594

ABSTRACT

The layered delafossite metal PdCrO[Formula: see text] is a natural heterostructure of highly conductive Pd layers Kondo coupled to localized spins in the adjacent Mott insulating CrO[Formula: see text] layers. At high temperatures, T, it has a T-linear resistivity which is not seen in the isostructural but nonmagnetic PdCoO[Formula: see text]. The strength of the Kondo coupling is known, as-grown crystals are extremely high purity and the Fermi surface is both very simple and experimentally known. It is therefore an ideal material platform in which to investigate "Planckian metal" physics. We do this by means of controlled introduction of point disorder, measurement of the thermal conductivity and Lorenz ratio, and studying the sources of its high-temperature entropy. The T-linear resistivity is seen to be due mainly to elastic scattering and to arise from a sum of several scattering mechanisms. Remarkably, this sum leads to a scattering rate within 10[Formula: see text] of the Planckian value of k[Formula: see text]T/[Formula: see text].

2.
Materials (Basel) ; 16(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37444834

ABSTRACT

Low-temperature variable-energy electron irradiation was used to induce non-magnetic disorder in a single crystal of a hole-doped iron-based superconductor, Ba1-xKxFe2As2, x = 0.80. To avoid systematic errors, the beam energy was adjusted non-consequently for five values between 1.0 and 2.5 MeV when sample resistance was measured in situ at 22 K. For all energies, the resistivity raises linearly with the irradiation fluence suggesting the creation of uncorrelated dilute point-like disorder (confirmed by simulations). The rate of the resistivity increase peaks at energies below 1.5 MeV. Comparison with calculated partial cross-sections points to the predominant creation of defects in the iron sublattice. Simultaneously, superconducting Tc, measured separately between the irradiation runs, is monotonically suppressed as expected, since it depends on the total scattering rate, hence on the total cross-section, which is a monotonically increasing function of the energy. Our work experimentally confirms an often-made assumption of the dominant role of the iron sub-lattice in iron-based superconductors.

4.
iScience ; 24(6): 102694, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34195570

ABSTRACT

Topological insulators (TIs) are bulk insulators with metallic surface states that can be described by a single Dirac cone. However, low-dimensional solids such as nanowires (NWs) are a challenge, due to the difficulty of separating surface contributions from bulk carriers. Fabrication of NWs with high surface-to-volume ratio can be realized by different methods such as chemical vapor transport, molecular beam epitaxy, and electrodeposition. The last method is used in the present work allowing the growth of structures such as p-n junctions, intercalation of magnetic or superconducting dots. We report the synthesis of high-quality TI NW: Bi2Te3, Sb2Te3 and p-n junction via electrodeposition. Structural, morphological, and nanostructure properties of NWs have been investigated by various characterization techniques. Interface structures and lateral heterojunctions (LHJ) in p-n junction NWs has also been made.

5.
Materials (Basel) ; 14(12)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199183

ABSTRACT

Static (DC) and dynamic (AC, at 14 MHz and 8 GHz) magnetic susceptibilities of single crystals of a ferromagnetic superconductor, EuFe2(As1-xPx)2 (x = 0.23), were measured in pristine state and after different doses of 2.5 MeV electron or 3.5 MeV proton irradiation. The superconducting transition temperature, Tc(H), shows an extraordinarily large decrease. It starts at Tc(H=0)≈24K in the pristine sample for both AC and DC measurements, but moves to almost half of that value after moderate irradiation dose. Remarkably, after the irradiation not only Tc moves significantly below the FM transition, its values differ drastically for measurements at different frequencies, ≈16 K in AC measurements and ≈12 K in a DC regime. We attribute such a large difference in Tc to the appearance of the spontaneous internal magnetic field below the FM transition, so that the superconductivity develops directly into the mixed spontaneous vortex-antivortex state where the onset of diamagnetism is known to be frequency-dependent. We also examined the response to the applied DC magnetic fields and studied the annealing of irradiated samples, which almost completely restores the superconducting transition. Overall, our results suggest that in EuFe2(As1-xPx)2 superconductivity is affected by local-moment ferromagnetism mostly via the spontaneous internal magnetic fields induced by the FM subsystem. Another mechanism is revealed upon irradiation where magnetic defects created in ordered Eu2+ lattice act as efficient pairbreakers leading to a significant Tc reduction upon irradiation compared to other 122 compounds. On the other hand, the exchange interactions seem to be weakly screened by the superconducting phase leading to a modest increase of Tm (less than 1 K) after the irradiation drives Tc to below Tm. Our results suggest that FM and SC phases coexist microscopically in the same volume.

6.
Sci Rep ; 10(1): 19452, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33173105

ABSTRACT

Inferring the nature of disorder in the media where elastic objects are nucleated is of crucial importance for many applications but remains a challenging basic-science problem. Here we propose a method to discern whether weak-point or strong-correlated disorder dominates based on characterizing the distribution of the interaction forces between objects mapped in large fields-of-view. We illustrate our proposal with the case-study system of vortex structures nucleated in type-II superconductors with different pinning landscapes. Interaction force distributions are computed from individual vortex positions imaged in thousands-vortices fields-of-view in a two-orders-of-magnitude-wide vortex-density range. Vortex structures nucleated in point-disordered media present Gaussian distributions of the interaction force components. In contrast, if the media have dilute and randomly-distributed correlated disorder, these distributions present non-Gaussian algebraically-decaying tails for large force magnitudes. We propose that detecting this deviation from the Gaussian behavior is a fingerprint of strong disorder, in our case originated from a dilute distribution of correlated pinning centers.

7.
Science ; 368(6496): 1234-1238, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32527829

ABSTRACT

Microstructures can be carefully designed to reveal the quantum phase of the wave-like nature of electrons in a metal. Here, we report phase-coherent oscillations of out-of-plane magnetoresistance in the layered delafossites PdCoO2 and PtCoO2 The oscillation period is equivalent to that determined by the magnetic flux quantum, h/e, threading an area defined by the atomic interlayer separation and the sample width, where h is Planck's constant and e is the charge of an electron. The phase of the electron wave function appears robust over length scales exceeding 10 micrometers and persisting up to temperatures of T > 50 kelvin. We show that the experimental signal stems from a periodic field modulation of the out-of-plane hopping. These results demonstrate extraordinary single-particle quantum coherence lengths in delafossites.

8.
Sci Adv ; 3(6): e1601667, 2017 06.
Article in English | MEDLINE | ID: mdl-28691082

ABSTRACT

In exotic superconductors, including high-Tc copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu2Si2, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu2Si2, demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction.

9.
Nat Commun ; 7: 13259, 2016 10 31.
Article in English | MEDLINE | ID: mdl-27796297

ABSTRACT

Three-dimensional topological insulators are fascinating materials with insulating bulk yet metallic surfaces that host highly mobile charge carriers with locked spin and momentum. Remarkably, surface currents with tunable direction and magnitude can be launched with tailored light beams. To better understand the underlying mechanisms, the current dynamics need to be resolved on the timescale of elementary scattering events (∼10 fs). Here, we excite and measure photocurrents in the model topological insulator Bi2Se3 with a time resolution of 20 fs by sampling the concomitantly emitted broadband terahertz (THz) electromagnetic field from 0.3 to 40 THz. Strikingly, the surface current response is dominated by an ultrafast charge transfer along the Se-Bi bonds. In contrast, photon-helicity-dependent photocurrents are found to be orders of magnitude smaller than expected from generation scenarios based on asymmetric depopulation of the Dirac cone. Our findings are of direct relevance for broadband optoelectronic devices based on topological-insulator surface currents.

10.
Sci Adv ; 2(9): e1600807, 2016 09.
Article in English | MEDLINE | ID: mdl-27704046

ABSTRACT

The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba1-x K x )Fe2As2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping (x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconducting dome. We conducted a systematic study of the London penetration depth, λ(T), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Δλ ~ Tn , we find that the exponent n is the highest and the Tc suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t-matrix approach suggests the ubiquitous and robust nature of s± pairing in IBSs and argues against a previously suggested transition to a d-wave state near x = 1 in this system.


Subject(s)
Iron Compounds/chemistry , Physical Phenomena , Superconductivity , Anisotropy , Hot Temperature , Magnetics/methods , Phonons
11.
Nat Commun ; 7: 10957, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26961901

ABSTRACT

Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi2Te3 and Bi2Se3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size.


Subject(s)
Bismuth/chemistry , Electrons , Semiconductors , Tellurium/chemistry , Quantum Theory , Static Electricity , Surface Properties
12.
Nano Lett ; 16(6): 3409-14, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27010705

ABSTRACT

Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal-organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface. We demonstrate that that the hybrid interface can act on the topological protection of the surface and bury the Dirac cone below the first quintuple layer.

13.
Nat Mater ; 13(6): 580-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24836736

ABSTRACT

Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity scattering. In three-dimensional (3D) topological insulators, however, the surface Dirac fermions intermix with the conducting bulk, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response. Here we use differential magnetometry to probe spin rotation in the 3D topological material family (Bi2Se3, Bi2Te3 and Sb2Te3). We report a paramagnetic singularity in the magnetic susceptibility at low magnetic fields that persists up to room temperature, and which we demonstrate to arise from the surfaces of the samples. The singularity is universal to the entire family, largely independent of the bulk carrier density, and consistent with the existence of electronic states near the spin-degenerate Dirac point of the 2D helical metal. The exceptional thermal stability of the signal points to an intrinsic surface cooling process, probably of thermoelectric origin, and establishes a sustainable platform for the singular field-tunable Dirac spin response.

14.
Phys Rev Lett ; 106(15): 150603, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21568539

ABSTRACT

We present the experimental observation of the fluctuation-dissipation theorem violation in an assembly of interacting magnetic nanoparticles in the low temperature superspin-glass phase. The magnetic noise is measured with a two-dimension electron gas Hall probe and compared to the out of phase ac susceptibility of the same ferrofluid. For "intermediate" aging times of the order of 1 h, the ratio of the effective temperature T(eff) to the bath temperature T grows from 1 to 6.5 when T is lowered from T(g) to 0.3 T(g), regardless of the noise frequency. These values are comparable to those measured in an atomic spin glass as well as those calculated for a Heisenberg spin glass.

15.
Phys Rev Lett ; 105(26): 267002, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-21231706

ABSTRACT

Charge doping of iron-pnictide superconductors leads to collective pinning of flux vortices, whereas isovalent doping does not. Moreover, flux pinning in the charge-doped compounds is consistently described by the mean-free path fluctuations introduced by the dopant atoms, allowing for the extraction of the elastic quasiparticle scattering rate. The absence of scattering by dopant atoms in isovalently doped BaFe2(As(1-x)P(x))(2) is consistent with the observation of a linear temperature dependence of the low-temperature penetration depth in this material.

16.
Phys Rev Lett ; 90(13): 137002, 2003 Apr 04.
Article in English | MEDLINE | ID: mdl-12689317

ABSTRACT

Vortex thermal fluctuations in heavily underdoped Bi(2)Sr(2)CaCu(2)O(8+delta) (T(c)=69.4 K) are studied using Josephson plasma resonance. From the zero-field data, we obtain the c-axis penetration depth lambda(L,c)(0)=230+/-10 micrometer and the anisotropy ratio gamma(T). The low plasma frequency allows us to study phase correlations over the whole vortex solid state and to extract a wandering length r(w) of vortex pancakes. The temperature dependence of r(w) as well as its increase with dc magnetic field is explained by the renormalization of the vortex line tension by the fluctuations, suggesting that this softening is responsible for the dissociation of the vortices at the first order transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...