Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 485: 116888, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452945

ABSTRACT

Upregulation of the multidrug efflux pump ABCB1/MDR1 (P-gp) and the anti-apoptotic protein BIRC5/Survivin promotes multidrug resistance in various human cancers. GDC-0152 is a DIABLO/SMAC mimetic currently being tested in patients with solid tumors. However, it is still unclear whether GDC-0152 is therapeutically applicable for patients with ABCB1-overexpressing multidrug-resistant tumors, and the molecular mechanism of action of GDC-0152 in cancer cells is still incompletely understood. In this study, we found that the potency of GDC-0152 is unaffected by the expression of ABCB1 in cancer cells. Interestingly, through in silico and in vitro analysis, we discovered that GDC-0152 directly modulates the ABCB1-ATPase activity and inhibits ABCB1 multidrug efflux activity at sub-cytotoxic concentrations (i.e., 0.25×IC50 or less). Further investigation revealed that GDC-0152 also decreases BIRC5 expression, induces mitophagy, and lowers intracellular ATP levels in cancer cells at low cytotoxic concentrations (i.e., 0.5×IC50). Co-treatment with GDC-0152 restored the sensitivity to the known ABCB1 substrates, including paclitaxel, vincristine, and YM155 in ABCB1-expressing multidrug-resistant cancer cells, and it also restored the sensitivity to tamoxifen in BIRC5-overexpressing tamoxifen-resistant breast cancer cells in vitro. Moreover, co-treatment with GDC-0152 restored and potentiated the anticancer effects of paclitaxel in ABCB1 and BIRC5 co-expressing xenograft tumors in vivo. In conclusion, GDC-0152 has the potential for use in the management of cancer patients with ABCB1 and BIRC5-related drug resistance. The findings of our study provide essential information to physicians for designing a more patient-specific GDC-0152 clinical trial program in the future.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Benzodioxoles , Drug Resistance, Neoplasm , Indolizines , Survivin , Humans , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Survivin/genetics , Survivin/metabolism , Animals , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Female , Mice, Nude , Mice , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays , Apoptosis Regulatory Proteins/metabolism , Drug Resistance, Multiple/drug effects , Paclitaxel/pharmacology , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mice, Inbred BALB C , Inhibitor of Apoptosis Proteins/metabolism , Inhibitor of Apoptosis Proteins/genetics
2.
Life Sci ; 335: 122260, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37963509

ABSTRACT

Survivin is a member of the family of inhibitors of apoptosis proteins (IAPs). It is involved in the normal mitotic process and acts as an anti-apoptotic molecule. While terminally differentiated normal tissues lack survivin, several human malignancies have significant protein levels. Resistance to chemotherapy and radiation in tumor cells is associated with survivin expression. Decreased tumor development, apoptosis, and increased sensitivity to chemotherapy and radiation are all effects of downregulating survivin expression or activity. As a prospective cancer treatment, small molecules targeting the transcription and translation of survivin and molecules that can directly bind with the survivin are being explored both in pre-clinical and clinics. Pre-clinical investigations have found and demonstrated the effectiveness of several small-molecule survivin inhibitors. Unfortunately, these inhibitors have also been shown to have off-target effects, which could limit their clinical utility. In addition to small molecules, several survivin peptide vaccines are currently under development. These vaccines are designed to elicit a cytotoxic T-cell response against survivin, which could lead to the destruction of tumor cells expressing survivin. Some survivin-based vaccines are advancing through Phase II clinical studies. Overall, survivin is a promising cancer drug target. However, challenges still need to be addressed before the survivin targeted therapies can be widely used in the clinics.


Subject(s)
Neoplasms , Vaccines , Humans , Survivin , Inhibitor of Apoptosis Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Apoptosis , Vaccines/therapeutic use , Microtubule-Associated Proteins
3.
Drug Dev Res ; 84(3): 470-483, 2023 05.
Article in English | MEDLINE | ID: mdl-36744647

ABSTRACT

In the quest to develop potent inhibitors for Mycobacterium tuberculosis, novel isoniazid-based pyridinium salts were designed, synthesized, and tested for their antimycobacterial activities against the H37 Rv strain of Mycobacterium tuberculosis using rifampicin as a standard. The pyridinium salts 4k, 4l, and 7d showed exceptional antimycobacterial activities with MIC90 at 1 µg/mL. The in vitro cytotoxicity and pharmacokinetics profiles of these compounds were established for the identification of a lead molecule using in vivo efficacy proof-of-concept studies and found that the lead compound 4k possesses LC50 value at 25 µg/mL. The in vitro antimycobacterial activity results were further supported by in silico studies with good binding affinities ranging from -9.8 to -11.6 kcal/mol for 4k, 4l, and 7d with the target oxidoreductase DprE1 enzyme. These results demonstrate that pyridinium salts derived from isoniazid can be a potentially promising pharmacophore for the development of novel antitubercular candidates.


Subject(s)
Isoniazid , Mycobacterium tuberculosis , Isoniazid/pharmacology , Molecular Docking Simulation , Salts , Antitubercular Agents/chemistry , Microbial Sensitivity Tests
4.
Gene ; 844: 146821, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35985410

ABSTRACT

Identifying suitable deregulated targets in autophagy pathway is essential for developing autophagy modulating cancer therapies. With this aim, we systematically analyzed the expression levels of genes that contribute to the execution of autophagy in 21 cancers. Deregulated genes for 21 cancers were analyzed using the level 3 mRNA data from TCGAbiolinks. A total of 574 autophagy genes were mapped to the deregulated genes across 21 cancers. PPI network, cluster analysis, gene enrichment, gene ontology, KEGG pathway, patient survival, protein expression and cMap analysis were performed. Among the autophagy genes, 260 were upregulated, and 43 were downregulated across pan-cancer. The upregulated autophagy genes - CDKN2A and BIRC5 - were the most frequent signatures in cancers and could be universal cancer biomarkers. Significant involvement of autophagy process was found in 8 cancers (CHOL, HNSC, GBM, KICH, KIRC, KIRP, LIHC and SARC). Fifteen autophagy hub genes (ATP6V0C, BIRC5, HDAC1, IL4, ITGB1, ITGB4, MAPK3, mTOR, cMYC, PTK2, SRC, TCIRG1, TP63, TP73 and ULK1) were found to be linked with patients survival and also expressed in cancer patients tissue samples, making them as potential drug targets for these cancers. The deregulated autophagy genes were further used to identify drugs Losartan, BMS-345541, Embelin, Abexinostat, Panobinostat, Vorinostat, PD-184352, PP-1, XMD-1150, Triplotide, Doxorubicin and Ouabain, which could target one or more autophagy hub genes. Overall, our findings shed light on the most frequent cancer-associated autophagy genes, potential autophagy targets and molecules for cancer treatment. These findings can accelerate autophagy modulation in cancer therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Vacuolar Proton-Translocating ATPases , Autophagy/genetics , Carcinoma, Hepatocellular/genetics , Computational Biology , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Liver Neoplasms/genetics , Protein Interaction Maps/genetics , Vacuolar Proton-Translocating ATPases/genetics
5.
J Mol Model ; 27(1): 14, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33403456

ABSTRACT

Rheumatoid arthritis (RA) is a systemic autoimmune disorder that commonly affects multiple joints of the body. Currently, there is no permanent cure to the disease, but it can be managed with several potent drugs that cause serious side effects on prolonged use. Traditional remedies are considered promising for the treatment of several diseases, particularly chronic conditions, because they have lower side effects compared to synthetic drugs. In folklore, the rhizome of Alpinia calcarata Roscoe (Zingiberaceae) is used as a major ingredient of herbal formulations to treat RA. Phytoconstituents reported in A. calcarata rhizomes are diterpenoids, sesquiterpenoid, flavonoids, phytosterol, and volatile oils. The present study is intended to understand the molecular-level interaction of phytoconstituents present in A. calcarata rhizomes with RA molecular targets using computational approaches. A total of 30 phytoconstituents reported from the plant were used to carry out docking with 36 known targets of RA. Based on the docking results, 4 flavonoids were found to be strongly interacting with the RA targets. Further, molecular dynamics simulation confirmed stable interaction of quercetin with 6 targets (JAK3, SYK, MMP2, TLR8, IRAK1, and JAK1), galangin with 2 targets (IRAK1 and JAK1), and kaempferol (IRAK1) with one target of RA. Moreover, the presence of these three flavonoids was confirmed in the A. calcarata rhizome extract using LC-MS analysis. The computational study suggests that flavonoids present in A. calcarata rhizome may be responsible for RA modulatory activity. Particularly, quercetin and galangin could be potential development candidates for the treatment of RA. Investigation of Alpinia calcarata constituent interactions with molecular targets of rheumatoid arthritis: docking, molecular dynamics, and network approach.


Subject(s)
Alpinia/chemistry , Arthritis, Rheumatoid/drug therapy , Computational Biology , Flavonoids/pharmacology , Phytochemicals/pharmacology , Arthritis, Rheumatoid/metabolism , Chromatography, Liquid , Flavonoids/analysis , Flavonoids/chemistry , Humans , Interleukin-1 Receptor-Associated Kinases/chemistry , Interleukin-1 Receptor-Associated Kinases/drug effects , Janus Kinase 1/chemistry , Janus Kinase 1/drug effects , Janus Kinase 3/chemistry , Janus Kinase 3/drug effects , Kaempferols/chemistry , Kaempferols/pharmacology , Mass Spectrometry , Matrix Metalloproteinase 2/chemistry , Matrix Metalloproteinase 2/drug effects , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/analysis , Phytochemicals/chemistry , Plant Extracts/chemistry , Quercetin/chemistry , Quercetin/pharmacology , Rhizome/chemistry , Syk Kinase/chemistry , Syk Kinase/drug effects , Toll-Like Receptor 8/chemistry , Toll-Like Receptor 8/drug effects
6.
Toxicol Appl Pharmacol ; 401: 115080, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32497533

ABSTRACT

Upregulation of ABCB1/MDR1 (P-gp) and BIRC5/Survivin promotes multidrug resistance in a variety of human cancers. LCL161 is an anti-cancer DIABLO/SMAC mimetic currently being tested in patients with solid tumors, but the molecular mechanism of action of LCL161 in cancer cells is still incompletely understood. It is still unclear whether LCL161 is therapeutically applicable for patients with ABCB1-overexpressing multidrug resistant tumors. In this study, we found that the potency of LCL161 is not affected by the expression of ABCB1 in KB-TAX50, KB-VIN10, and NTU0.017 cancer cells. Besides, LCL161 is equally potent towards the parental MCF7 breast cancer cells and its BIRC5 overexpressing, hormone therapy resistance subline MCF7-TamC3 in vitro. Mechanistically, we found that LCL161 directly modulates the ABCB1-ATPase activity and inhibits ABCB1 multi-drug efflux activity at low cytotoxic concentrations (i.e. 0.5xIC50 or less). Further analysis revealed that LCL161 also decreases intracellular ATP levels in part through BIRC5 downregulation. Therapeutically, co-treatment with LCL161 at low cytotoxic concentrations restored the sensitivity to the known ABCB1 substrate, paclitaxel, in ABCB1-expressing cancer cells and increased the sensitivity to tamoxifen in MCF7-TamC3 cells. In conclusion, LCL161 has the potential for use in the management of cancer patients with ABCB1 and BIRC5-related drug resistance. The findings of our study provide important information to physicians for designing a more "patient-specific" LCL161 clinical trial program in the future.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/pharmacology , Mitochondrial Proteins/pharmacology , Survivin/antagonists & inhibitors , Thiazoles/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/metabolism , Adenosine Triphosphatases/metabolism , Antineoplastic Agents/chemistry , Apoptosis Regulatory Proteins/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Down-Regulation/physiology , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Mitochondrial Proteins/chemistry , Protein Structure, Secondary , Survivin/biosynthesis , Survivin/genetics , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...