Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 703
Filter
1.
Biotechnol J ; 19(8): e2400210, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39167552

ABSTRACT

The demand for the essential commodity chemical 1,2-propanediol (1,2-PDO) is on the rise, as its microbial production has emerged as a promising method for a sustainable chemical supply. However, the reliance of 1,2-PDO production in Escherichia coli on anaerobic conditions, as enhancing cell growth to augment precursor availability remains a substantial challenge. This study presents glucose-based aerobic production of 1,2-PDO, with xylose utilization facilitating cell growth. An engineered strain was constructed capable of exclusively producing 1,2-PDO from glucose while utilizing xylose to support cell growth. This was accomplished by deleting the gloA, eno, eda, sdaA, sdaB, and tdcG genes for 1,2-PDO production from glucose and introducing the Weimberg pathway for cell growth using xylose. Enhanced 1,2-PDO production was achieved via yagF overexpression and disruption of the ghrA gene involved in the 1,2-PDO-competing pathway. The resultant strain, PD72, produced 2.48 ± 0.15 g L-1 1,2-PDO with a 0.27 ± 0.02 g g-1-glucose yield after 72 h cultivation. Overall, this study demonstrates aerobic 1,2-PDO synthesis through the isolation of the 1,2-PDO synthetic pathway from the tricarboxylic acid cycle.


Subject(s)
Escherichia coli , Glucose , Metabolic Engineering , Metabolic Networks and Pathways , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Glucose/metabolism , Metabolic Networks and Pathways/genetics , Propylene Glycol/metabolism , Xylose/metabolism , Aerobiosis , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fermentation
2.
J Biosci Bioeng ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39122620

ABSTRACT

Protein-based therapeutics, including antibodies and antibody-like-proteins, have increasingly attracted attention due to their high specificity compared to small-molecular drugs. The Gγ recruitment system, one of the in vivo yeast two-hybrid systems for detecting protein-protein interactions, has been previously developed using yeast signal transduction machinery. In this study, we modified the Gγ recruitment system to screen the protein mutants that efficiently bind to the intracellular domain of the epidermal growth factor receptor L858R mutant (cytoEGFRL858R). Using the modified platform, we performed in vivo directed evolution for growth factor receptor-bound protein 2 (Grb2) and its truncated variant containing only the Src-homology 2 (SH2) domain, successfully identifying several mutants that more strongly bound to cytoEGFRL858R than their parental proteins. Some of them contained novel beneficial mutations (F108Y and Q144H) and specifically bound to the recombinant cytosolic phosphorylated EGFR in vitro, highlighting the utility of the evolutionary platform.

3.
Eng Life Sci ; 24(8): e2400005, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113812

ABSTRACT

The utilization of Streptomyces as a microbial chassis for developing innovative drugs and medicinal compounds showcases its capability to produce bioactive natural substances. Recent focus on the clustered regularly interspaced short palindromic repeat (CRISPR) technology highlights its potential in genome editing. However, applying CRISPR technology in certain microbial strains, particularly Streptomyces, encounters specific challenges. These challenges include achieving efficient gene expression and maintaining genetic stability, which are critical for successful genome editing. To overcome these obstacles, an innovative approach has been developed that combines several key elements: activation-induced cytidine deaminase (AID), nuclease-deficient cas9 variants (dCas9), and Petromyzon marinus cytidine deaminase 1 (PmCDA1). In this study, this novel strategy was employed to engineer a Streptomyces coelicolor strain. The target gene was actVA-ORF4 (SCO5079), which is involved in actinorhodin production. The engineering process involved introducing a specific construct [pGM1190-dcas9-pmCDA-UGI-AAV-actVA-ORF4 (SCO5079)] to create a CrA10 mutant strain. The resulting CrA10 mutant strain did not produce actinorhodin. This outcome highlights the potential of this combined approach in the genetic manipulation of Streptomyces. The failure of the CrA10 mutant to produce actinorhodin conclusively demonstrates the success of gene editing at the targeted site, affirming the effectiveness of this method for precise genetic modifications in Streptomyces.

4.
Sci Rep ; 14(1): 19578, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179636

ABSTRACT

Large-scale production of cultured meat requires bulk culture medium containing growth-promoting proteins from animal serum. However, animal serum for mammalian cell culture is associated with high costs, ethical concerns, and contamination risks. Owing to its growth factor content, conditioned medium from rat liver epithelial RL34 cells can replace animal serum for myoblast proliferation. More seeded cells and longer culture periods are thought to yield higher growth factor levels, resulting in more effective muscle cell proliferation. However, RL34 cells can deplete nutrients and release harmful metabolites into the culture medium over time, potentially causing growth inhibition and apoptosis. This issue highlights the need for waste clearance during condition medium production. To address this issue, we introduced a lactate permease gene (lldP) and an L-lactate-to-pyruvate conversion enzyme gene (lldD) to generate a recombinant L-lactate-assimilating cyanobacterium Synechococcus sp. KC0110 strain. Transwell co-culture of this strain with RL34 cells exhibited a marked reduction in the levels of harmful metabolites, lactate and ammonium, while maintaining higher concentrations of glucose, pyruvate, and pyruvate-derived amino acids than those seen with RL34 cell monocultures. The co-culture medium supported myoblast proliferation without medium dilution or additional nutrients, which was attributed to the waste clearance and nutrient replenishment effects of the KC0110 strain. This culture system holds potential for the production of low-cost, and animal-free cultured meat.


Subject(s)
Coculture Techniques , Lactic Acid , Meat , Animals , Lactic Acid/metabolism , Rats , Coculture Techniques/methods , Culture Media, Serum-Free , Cell Proliferation , Synechococcus/metabolism , Synechococcus/genetics , Synechococcus/growth & development , Cell Line , Myoblasts/metabolism , Myoblasts/cytology , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , In Vitro Meat
5.
Sci Rep ; 14(1): 18540, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122907

ABSTRACT

Cellobiose has received increasing attention in various industrial sectors, ranging from food and feed to cosmetics. The development of large-scale cellobiose applications requires a cost-effective production technology as currently used methods based on cellulose hydrolysis are costly. Here, a one-pot synthesis of cellobiose from sucrose was conducted using a recombinant Pichia pastoris strain as a reusable whole-cell biocatalyst. Thermophilic sucrose phosphorylase from Bifidobacterium longum (BlSP) and cellobiose phosphorylase from Clostridium stercorarium (CsCBP) were co-displayed on the cell surface of P. pastoris via a glycosylphosphatidylinositol-anchoring system. Cells of the BlSP and CsCBP co-displaying P. pastoris strain were used as whole-cell biocatalysts to convert sucrose to cellobiose with commercial thermophilic xylose isomerase. Cellobiose productivity significantly improved with yeast cells grown on glycerol compared to glucose-grown cells. In one-pot bioconversion using glycerol-grown yeast cells, approximately 81.2 g/L of cellobiose was produced from 100 g/L of sucrose, corresponding to 81.2% of the theoretical maximum yield, within 24 h at 60 °C. Moreover, recombinant yeast cells maintained a cellobiose titer > 80 g/L, even after three consecutive cell-recycling one-pot bioconversion cycles. These results indicated that one-pot bioconversion using yeast cells displaying two phosphorylases as whole-cell catalysts is a promising approach for cost-effective cellobiose production.


Subject(s)
Biocatalysis , Cellobiose , Glucosyltransferases , Sucrose , Cellobiose/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Sucrose/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomycetales/enzymology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Clostridium/enzymology , Clostridium/genetics
6.
Biotechnol Prog ; : e3499, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056525

ABSTRACT

Short-chain esters, particularly isobutyl acetate and isoamyl acetate, hold significant industrial value due to their wide-ranging applications in flavors, fragrances, solvents, and biofuels. In this study, we demonstrated the biosynthesis of acetate esters using Yarrowia lipolytica as a host by feeding alcohols to the yeast culture. Initially, we screened for optimal alcohol acyltransferases for ester biosynthesis in Y. lipolytica. Strains of Y. lipolytica expressing atf1 from Saccharomyces cerevisiae, produced 251 or 613 mg/L of isobutyl acetate or of isoamyl acetate, respectively. We found that introducing additional copies of ATF1 enhanced ester production. Furthermore, by increasing the supply of acetyl-CoA and refining the culture conditions, we achieved high production of isoamyl acetate, reaching titers of 3404 mg/L. We expanded our study to include the synthesis of a range of acetate esters, facilitated by enriching the culture medium with various alcohols. This study underscores the versatility and potential of Y. lipolytica in the industrial production of acetate esters.

7.
Biol Methods Protoc ; 9(1): bpae044, 2024.
Article in English | MEDLINE | ID: mdl-38962661

ABSTRACT

Biosurfactants have remarkable characteristics, such as environmental friendliness, high safety, and excellent biodegradability. Surfactin is one of the best-known biosurfactants produced by Bacillus subtilis. Because the biosynthetic pathways of biosurfactants, such as surfactin, are complex, mutagenesis is a useful alternative to typical metabolic engineering approaches for developing high-yield strains. Therefore, there is a need for high-throughput and accurate screening methods for high-yield strains derived from mutant libraries. The blood agar lysis method, which takes advantage of the hemolytic activity of biosurfactants, is one way of determining their concentration. This method includes inoculating microbial cells onto blood-containing agar plates, and biosurfactant production is assessed based on the size of the hemolytic zone formed around each colony. Challenges with the blood agar lysis method include low experimental reproducibility and a lack of established protocols for high-throughput screening. Therefore, in this study, we investigated the effects of the inoculation procedure and media composition on the formation of hemolytic zones. We also developed a workflow to evaluate the number of colonies using robotics. The results revealed that by arranging colonies at appropriate intervals and measuring the areas of colonies and hemolytic rings using image analysis software, it was possible to accurately compare the hemolytic activity among several colonies. Although the use of the blood agar lysis method for screening is limited to surfactants exhibiting hemolytic activity, it is believed that by considering the insights gained from this study, it can contribute to the accurate screening of strains with high productivity.

8.
Microb Cell Fact ; 23(1): 178, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879464

ABSTRACT

BACKGROUND: Computational mining of useful enzymes and biosynthesis pathways is a powerful strategy for metabolic engineering. Through systematic exploration of all conceivable combinations of enzyme reactions, including both known compounds and those inferred from the chemical structures of established reactions, we can uncover previously undiscovered enzymatic processes. The application of the novel alternative pathways enables us to improve microbial bioproduction by bypassing or reinforcing metabolic bottlenecks. Benzylisoquinoline alkaloids (BIAs) are a diverse group of plant-derived compounds with important pharmaceutical properties. BIA biosynthesis has developed into a prime example of metabolic engineering and microbial bioproduction. The early bottleneck of BIA production in Escherichia coli consists of 3,4-dihydroxyphenylacetaldehyde (DHPAA) production and conversion to tetrahydropapaveroline (THP). Previous studies have selected monoamine oxidase (MAO) and DHPAA synthase (DHPAAS) to produce DHPAA from dopamine and oxygen; however, both of these enzymes produce toxic hydrogen peroxide as a byproduct. RESULTS: In the current study, in silico pathway design is applied to relieve the bottleneck of DHPAA production in the synthetic BIA pathway. Specifically, the cytochrome P450 enzyme, tyrosine N-monooxygenase (CYP79), is identified to bypass the established MAO- and DHPAAS-mediated pathways in an alternative arylacetaldoxime route to DHPAA with a peroxide-independent mechanism. The application of this pathway is proposed to result in less formation of toxic byproducts, leading to improved production of reticuline (up to 60 mg/L at the flask scale) when compared with that from the conventional MAO pathway. CONCLUSIONS: This study showed improved reticuline production using the bypass pathway predicted by the M-path computational platform. Reticuline production in E. coli exceeded that of the conventional MAO-mediated pathway. The study provides a clear example of the integration of pathway mining and enzyme design in creating artificial metabolic pathways and suggests further potential applications of this strategy in metabolic engineering.


Subject(s)
Benzylisoquinolines , Escherichia coli , Metabolic Engineering , Metabolic Engineering/methods , Benzylisoquinolines/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Cytochrome P-450 Enzyme System/metabolism , Biosynthetic Pathways , Computer Simulation , Tetrahydropapaveroline/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , 3,4-Dihydroxyphenylacetic Acid/analogs & derivatives
9.
Bioresour Technol ; 406: 130927, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830477

ABSTRACT

2-Phenylethanol, known for its rose-like odor and antibacterial activity, is synthesized via exogenous phenylpyruvate by the sequential reaction of phenylpyruvate decarboxylase (PDC) and aldehyde reductase. We first targeted ARO10, a phenylpyruvate decarboxylase gene from Saccharomyces cerevisiae, and identified a suitable aldehyde reductase gene. Co-expression of ARO10 and yahK in E. coli transformants yielded 1.1 g/L of 2-phenylethanol in batch culture. We hypothesized that there might be a bottleneck in PDC activity. The computer-based enzyme evolution was utilized to enhance production. The introduction of an amino acid substitution in ARO10 (ARO10 I544W) stabilized the aromatic ring of the phenylpyruvate substrate, increasing 2-phenylethanol yield 4.1-fold compared to wild-type ARO10. Cultivation of ARO10 I544W-expressing E. coli produced 2.5 g/L of 2-phenylethanol with a yield from glucose of 0.16 g/g after 72 h. This approach represents a significant advancement, achieving the highest yield of 2-phenylethanol from glucose using microbes to date.


Subject(s)
Carboxy-Lyases , Escherichia coli , Metabolic Engineering , Phenylethyl Alcohol , Saccharomyces cerevisiae , Escherichia coli/metabolism , Escherichia coli/genetics , Phenylethyl Alcohol/metabolism , Metabolic Engineering/methods , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Glucose/metabolism
10.
Appl Microbiol Biotechnol ; 108(1): 352, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819468

ABSTRACT

Fucoxanthin is a versatile substance in the food and pharmaceutical industries owing to its excellent antioxidant and anti-obesity properties. Several microalgae, including the haptophyte Pavlova spp., can produce fucoxanthin and are potential industrial fucoxanthin producers, as they lack rigid cell walls, which facilitates fucoxanthin extraction. However, the commercial application of Pavlova spp. is limited owing to insufficient biomass production. In this study, we aimed to develop a mixotrophic cultivation method to increase biomass and fucoxanthin production in Pavlova gyrans OPMS 30543X. The effects of culturing OPMS 30543X with different organic carbon sources, glycerol concentrations, mixed-nutrient conditions, and light intensities on the consumption of organic carbon sources, biomass production, and fucoxanthin accumulation were analyzed. Several organic carbon sources, such as glycerol, glucose, sucrose, and acetate, were examined, revealing that glycerol was well-consumed by the microalgae. Biomass and fucoxanthin production by OPMS 30543X increased in the presence of 10 mM glycerol compared to that observed without glycerol. Metabolomic analysis revealed higher levels of the metabolites related to the glycolytic, Calvin-Benson-Bassham, and tricarboxylic acid cycles under mixotrophic conditions than under autotrophic conditions. Cultures grown under mixotrophic conditions with a light intensity of 100 µmol photons m-2 s-1 produced more fucoxanthin than autotrophic cultures. Notably, the amount of fucoxanthin produced (18.9 mg/L) was the highest reported thus far for Pavlova species. In conclusion, the use of mixotrophic culture is a promising strategy for increasing fucoxanthin production in Pavlova species. KEY POINTS: • Glycerol enhances biomass and fucoxanthin production in Pavlova gyrans • Metabolite levels increase under mixotrophic conditions • Mixotrophic conditions and medium-light intensity are appropriate for P. gyrans.


Subject(s)
Biomass , Glycerol , Haptophyta , Xanthophylls , Xanthophylls/metabolism , Glycerol/metabolism , Haptophyta/metabolism , Haptophyta/growth & development , Haptophyta/radiation effects , Microalgae/metabolism , Microalgae/growth & development , Culture Media/chemistry , Carbon/metabolism , Light , Metabolomics
11.
J Biosci Bioeng ; 138(2): 153-162, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38777650

ABSTRACT

Only a few reports available about the assimilation of hydrophobic or oil-based feedstock as carbon sources by Lipomyces starkeyi. In this study, the ability of L. starkeyi to efficiently utilize free fatty acids (FFAs) and real biomass like palm acid oil (PAO) as well as crude palm kernel oil (CPKO) for growth and lipid production was investigated. PAO, CPKO, and FFAs were evaluated as sole carbon sources or in the mixed medium containing glucose. L. starkeyi was able to grow on the medium supplemented with PAO and FFAs, which contained long-chain length FAs and accumulated lipids up to 35% (w/w) of its dry cell weight. The highest lipid content and lipid concentration were achieved at 50% (w/w) and 10.1 g/L, respectively, when L. starkeyi was cultured in nitrogen-limited mineral medium (-NMM) supplemented with PAO emulsion. Hydrophobic substrate like PAO could be served as promising carbon source for L. starkeyi.


Subject(s)
Lipomyces , Palm Oil , Palm Oil/metabolism , Palm Oil/chemistry , Lipomyces/metabolism , Lipomyces/growth & development , Biomass , Carbon/metabolism , Industrial Waste , Fatty Acids, Nonesterified/metabolism , Plant Oils/metabolism , Lipids/biosynthesis , Lipids/chemistry , Culture Media/chemistry , Glucose/metabolism
12.
World J Gastroenterol ; 30(18): 2402-2417, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764770

ABSTRACT

Viral hepatitis represents a major danger to public health, and is a globally leading cause of death. The five liver-specific viruses: Hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis D virus, and hepatitis E virus, each have their own unique epidemiology, structural biology, transmission, endemic patterns, risk of liver complications, and response to antiviral therapies. There remain few options for treatment, in spite of the increasing prevalence of viral-hepatitis-caused liver disease. Furthermore, chronic viral hepatitis is a leading worldwide cause of both liver-related morbidity and mortality, even though effective treatments are available that could reduce or prevent most patients' complications. In 2016, the World Health Organization released its plan to eliminate viral hepatitis as a public health threat by the year 2030, along with a discussion of current gaps and prospects for both regional and global eradication of viral hepatitis. Today, treatment is sufficiently able to prevent the disease from reaching advanced phases. However, future therapies must be extremely safe, and should ideally limit the period of treatment necessary. A better understanding of pathogenesis will prove beneficial in the development of potential treatment strategies targeting infections by viral hepatitis. This review aims to summarize the current state of knowledge on each type of viral hepatitis, together with major innovations.


Subject(s)
Antiviral Agents , Hepatitis, Viral, Human , Humans , Antiviral Agents/therapeutic use , Hepatitis, Viral, Human/epidemiology , Hepatitis, Viral, Human/virology , Hepatitis, Viral, Human/therapy , Hepatitis, Viral, Human/diagnosis , Hepatitis Viruses/pathogenicity , Hepatitis Viruses/drug effects , Hepatitis Viruses/genetics , Prevalence , Liver/virology , Liver/pathology
13.
Microb Cell Fact ; 23(1): 104, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594681

ABSTRACT

BACKGROUND: Single-cell droplet microfluidics is an important platform for high-throughput analyses and screening because it provides an independent and compartmentalized microenvironment for reaction or cultivation by coencapsulating individual cells with various molecules in monodisperse microdroplets. In combination with microbial biosensors, this technology becomes a potent tool for the screening of mutant strains. In this study, we demonstrated that a genetically engineered yeast strain that can fluorescently sense agonist ligands via the heterologous expression of a human G-protein-coupled receptor (GPCR) and concurrently secrete candidate peptides is highly compatible with single-cell droplet microfluidic technology for the high-throughput screening of new agonistically active peptides. RESULTS: The water-in-oil microdroplets were generated using a flow-focusing microfluidic chip to encapsulate engineered yeast cells coexpressing a human GPCR [i.e., angiotensin II receptor type 1 (AGTR1)] and a secretory agonistic peptide [i.e., angiotensin II (Ang II)]. The single yeast cells cultured in the droplets were then observed under a microscope and analyzed using image processing incorporating machine learning techniques. The AGTR1-mediated signal transduction elicited by the self-secreted Ang II peptide was successfully detected via the expression of a fluorescent reporter in single-cell yeast droplet cultures. The system could also distinguish Ang II analog peptides with different agonistic activities. Notably, we further demonstrated that the microenvironment of the single-cell droplet culture enabled the detection of rarely existing positive (Ang II-secreting) yeast cells in the model mixed cell library, whereas the conventional batch-culture environment using a shake flask failed to do so. Thus, our approach provided compartmentalized microculture environments, which can prevent the diffusion, dilution, and cross-contamination of peptides secreted from individual single yeast cells for the easy identification of GPCR agonists. CONCLUSIONS: We established a droplet-based microfluidic platform that integrated an engineered yeast biosensor strain that concurrently expressed GPCR and self-secreted the agonistic peptides. This offers individually isolated microenvironments that allow the culture of single yeast cells secreting these peptides and gaging their signaling activities, for the high-throughput screening of agonistic peptides. Our platform base on yeast GPCR biosensors and droplet microfluidics will be widely applicable to metabolic engineering, environmental engineering, and drug discovery.


Subject(s)
Microfluidics , Saccharomyces cerevisiae , Humans , Microfluidics/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Peptides/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , High-Throughput Screening Assays
14.
Environ Microbiol Rep ; 16(2): e13243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38425145

ABSTRACT

We developed a simulation model of human oral microbiota using Bio Palette oral medium (BPOM) containing 0.02% glucose and lower bacterial nitrogen sources, derived from saliva and dental plaque. By decreasing the concentration of Gifu anaerobic medium (GAM) from 30 to 10 g L-1 , we observed increased ratios of target pathogenic genera, Porphyromonas and Fusobacterium from 0.5% and 1.7% to 1.2% and 3.5%, respectively, in the biofilm on hydroxyapatite (HA) discs. BPOM exhibited the higher ratios of Porphyromonas and Fusobacterium, and amplicon sequence variant number on HA, compared with GAM, modified GAM and basal medium mucin. Mixing glycerol stocks of BPOM culture solutions from four human subjects resulted in comparable ratios of these bacteria to the original saliva. In this simulation model, sitafloxacin showed higher inhibitory effects on P. gingivalis than minocycline hydrochloride at a low dosage of 0.1 µg mL-1 . Probiotics such as Streptococcus salivarius and Limosilactobacillus fermentum also showed significant decreases in Porphyromonas and Fusobacterium ratios on HA, respectively. Overall, the study suggests that BPOM with low carbon and nutrients could be a versatile platform for assessing the efficacy of antibiotics and live biotherapeutics in treating oral diseases caused by Porphyromonas and Fusobacterium.


Subject(s)
Fusobacterium nucleatum , Microbiota , Humans , Porphyromonas gingivalis/genetics , Saliva/microbiology , Biofilms
15.
Epilepsy Behav ; 153: 109687, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368791

ABSTRACT

OBJECTIVE: We investigated neuropsychological outcome in patients with pharmacoresistant pediatric-onset epilepsy caused by focal cortical dysplasia (FCD), who underwent frontal lobe resection during adolescence and young adulthood. METHODS: Twenty-seven patients were studied, comprising 15 patients who underwent language-dominant side resection (LDR) and 12 patients who had languagenondominant side resection (n-LDR). We evaluated intelligence (language function, arithmetic ability, working memory, processing speed, visuo-spatial reasoning), executive function, and memory in these patients before and two years after resection surgery. We analyzed the relationship between neuropsychological outcome and resected regions (side of language dominance and location). RESULTS: Although 75% of the patients showed improvement or no change in individual neuropsychological tests after surgical intervention, 25% showed decline. The cognitive tests that showed improvement or decline varied between LDR and n-LDR. In patients who had LDR, decline was observed in Vocabulary and Phonemic Fluency (both 5/15 patients), especially after resection of ventrolateral frontal cortex, and improvement was observed in WCST-Category (7/14 patients), Block Design (6/15 patients), Digit Symbol (4/15 patients), and Delayed Recall (3/9 patients). In patients who underwent n-LDR, improvement was observed in Vocabulary (3/12 patients), but decline was observed in Block Design (2/9 patients), and WCST-Category (2/9 patients) after resection of dorsolateral frontal cortex; and Arithmetic (3/10 patients) declined after resection of dorsolateral frontal cortex or ventrolateral frontal cortex. General Memory (3/8 patients), Visual Memory (3/8 patients), Delayed Recall (3/8 patients), Verbal Memory (2/9 patients), and Digit Symbol (3/12 patients) also declined after n-LDR. CONCLUSION: Postoperative changes in cognitive function varied depending on the location and side of the resection. For precise presurgical prediction of neuropsychological outcome after surgery, further prospective studies are needed to accumulate data of cognitive changes in relation to the resection site.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Focal Cortical Dysplasia , Child , Humans , Adolescent , Young Adult , Adult , Treatment Outcome , Epilepsy/etiology , Epilepsy/surgery , Epilepsy/psychology , Frontal Lobe/diagnostic imaging , Frontal Lobe/surgery , Memory, Short-Term , Neuropsychological Tests , Epilepsy, Temporal Lobe/surgery , Retrospective Studies
16.
Commun Biol ; 7(1): 233, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409320

ABSTRACT

Glycogen serves as a metabolic sink in cyanobacteria. Glycogen deficiency causes the extracellular release of distinctive metabolites such as pyruvate and 2-oxoglutarate upon nitrogen depletion; however, the mechanism has not been fully elucidated. This study aimed to elucidate the mechanism of carbon partitioning in glycogen-deficient cyanobacteria. Extracellular and intracellular metabolites in a glycogen-deficient ΔglgC mutant of Synechococcus elongatus PCC 7942 were comprehensively analyzed. In the presence of a nitrogen source, the ΔglgC mutant released extracellular glutamate rather than pyruvate and 2-oxoglutarate, whereas its intracellular glutamate level was lower than that in the wild-type strain. The de novo synthesis of glutamate increased in the ΔglgC mutant, suggesting that glycogen deficiency enhanced carbon partitioning into glutamate and extracellular excretion through an unidentified transport system. This study proposes a model in which glutamate serves as the prime extracellular metabolic sink alternative to glycogen when nitrogen is available.


Subject(s)
Carbon , Glycogen , Carbon/metabolism , Glycogen/metabolism , Photosynthesis , Glutamic Acid/metabolism , Ketoglutaric Acids/metabolism , Nitrogen/metabolism , Pyruvates
17.
Sci Rep ; 14(1): 4269, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383855

ABSTRACT

The role of the amygdala in unconscious emotional processing remains a topic of debate. Past lesion studies have indicated that amygdala damage leads to impaired electrodermal activity in response to subliminally presented emotional stimuli. However, electrodermal activity can reflect both emotional and nonemotional processes. To provide behavioral evidence highlighting the critical role of the amygdala in unconscious emotional processing, we examined patients (n = 16) who had undergone unilateral resection of medial temporal lobe structures, including the amygdala. We utilized the subliminal affective priming paradigm in conjunction with unilateral visual presentation. Fearful or happy dynamic facial expressions were presented in unilateral visual fields for 30 ms, serving as negative or positive primes. Subsequently, neutral target faces were displayed, and participants were tasked with rating the valence of these targets. Positive primes, compared to negative ones, enhanced valence ratings of the target to a greater extent when they stimulated the intact hemisphere (i.e., were presented in the contralateral visual field of the intact hemisphere) than when they stimulated the resected hemisphere (i.e., were presented in the contralateral visual field of the resected hemisphere). These results suggest that the amygdala is causally involved in unconscious emotional processing.


Subject(s)
Emotions , Fear , Humans , Emotions/physiology , Fear/physiology , Temporal Lobe/surgery , Amygdala/physiology , Visual Fields , Unconsciousness , Facial Expression , Magnetic Resonance Imaging
18.
Appl Microbiol Biotechnol ; 108(1): 110, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229297

ABSTRACT

Terpenoids are widely used in the food, beverage, cosmetics, and pharmaceutical industries. Microorganisms have been extensively studied for terpenoid production. In yeast, the introduction of the mevalonate (MVA) pathway in organelles in addition to the augmentation of its own MVA pathway have been challenging. Introduction of the MVA pathway into mitochondria is considered a promising approach for terpenoid production because acetyl-CoA, the starting molecule of the MVA pathway, is abundant in mitochondria. However, mitochondria comprise only a small percentage of the entire cell. Therefore, we hypothesized that increasing the total mitochondrial volume per cell would increase terpenoid production. First, we ascertained that the amounts of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the final molecules of the MVA pathway, were 15-fold higher of the strain expressing the MVA pathway in mitochondria than in the wild-type yeast strain. Second, we found that different deletion mutants induced different mitochondrial volumes by measuring the mitochondrial volume in various deletion mutants affecting mitochondrial morphology; for example,Δmdm32 increased mitochondrial volume, and Δfzo1 decreased it. Finally, the effects of mitochondrial volume on amounts of IPP/DMAPP and terpenoids (squalene or ß-carotene) were investigated using mutants harboring large or small mitochondria expressing the MVA pathway in mitochondria. Amounts of IPP/DMAPP and terpenoids (squalene or ß-carotene) increased when the mitochondrial volume expanded. Introducing the MVA pathway into mitochondria for terpenoid production in yeast may become more attractive by enlarging the mitochondrial volume. KEY POINTS: • IPP/DMAPP content increased in the strain expressing the MVA pathway in mitochondria • IPP/DMAPP and terpenoid contents are positively correlated with mitochondrial volume • Enlarging the mitochondria may improve mitochondria-mediated terpenoid production.


Subject(s)
Organophosphorus Compounds , Terpenes , beta Carotene , Terpenes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Squalene , Hemiterpenes/metabolism , Mitochondria/metabolism , Mevalonic Acid/metabolism
19.
BioTech (Basel) ; 13(1)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38247732

ABSTRACT

Styrene is an important industrial chemical. Although several studies have reported microbial styrene production, the amount of styrene produced in batch cultures can be increased. In this study, styrene was produced using genetically engineered Escherichia coli. First, we evaluated five types of phenylalanine ammonia lyases (PALs) from Arabidopsis thaliana (AtPAL) and Brachypodium distachyon (BdPAL) for their ability to produce trans-cinnamic acid (Cin), a styrene precursor. AtPAL2-expressing E. coli produced approximately 700 mg/L of Cin and we found that BdPALs could convert Cin into styrene. To assess styrene production, we constructed an E. coli strain that co-expressed AtPAL2 and ferulic acid decarboxylase from Saccharomyces cerevisiae. After a biphasic culture with oleyl alcohol, styrene production and yield from glucose were 3.1 g/L and 26.7% (mol/mol), respectively, which, to the best of our knowledge, are the highest values obtained in batch cultivation. Thus, this strain can be applied to the large-scale industrial production of styrene.

20.
Bioresour Technol ; 393: 130144, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042432

ABSTRACT

This study aimed to establish a high-level phenol bioproduction system from glycerol through metabolic engineering of the yeast Pichia pastoris (Komagataella phaffii). Introducing tyrosine phenol-lyase to P. pastoris led to a production of 59 mg/L of phenol in flask culture. By employing a strain of P. pastoris that overproduces tyrosine-a precursor to phenol-we achieved a phenol production of 1052 mg/L in glycerol fed-batch fermentation. However, phenol concentrations exceeding 1000 mg/L inhibited P. pastoris growth. A phenol pertraction system utilizing a hollow fiber membrane contactor and tributyrin as the organic solvent was developed to reduce phenol concentration in the culture medium. Integrating this system with glycerol fed-batch fermentation resulted in a 214 % increase in phenol titer (3304 mg/L) compared to glycerol fed-batch fermentation alone. These approaches offer a significant framework for the microbial production of chemicals and materials that are highly toxic to microorganisms.


Subject(s)
Glycerol , Phenol , Saccharomycetales , Fermentation , Glycerol/metabolism , Phenol/metabolism , Pichia/metabolism , Recombinant Proteins/metabolism , Methanol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL