Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 131(24): 2682-2697, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29592892

ABSTRACT

Monosomy 7 (-7) and del(7q) are high-risk cytogenetic abnormalities common in myeloid malignancies. We previously reported that CUX1, a homeodomain-containing transcription factor encoded on 7q22, is frequently inactivated in myeloid neoplasms, and CUX1 myeloid tumor suppressor activity is conserved from humans to Drosophila. CUX1-inactivating mutations are recurrent in clonal hematopoiesis of indeterminate potential as well as myeloid malignancies, in which they independently carry a poor prognosis. To determine the role for CUX1 in hematopoiesis, we generated 2 short hairpin RNA-based mouse models with ∼54% (Cux1mid) or ∼12% (Cux1low) residual CUX1 protein. Cux1mid mice develop myelodysplastic syndrome (MDS) with anemia and trilineage dysplasia, whereas CUX1low mice developed MDS/myeloproliferative neoplasms and anemia. In diseased mice, restoration of CUX1 expression was sufficient to reverse the disease. CUX1 knockdown bone marrow transplant recipients exhibited a transient hematopoietic expansion, followed by a reduction of hematopoietic stem cells (HSCs), and fatal bone marrow failure, in a dose-dependent manner. RNA-sequencing after CUX1 knockdown in human CD34+ cells identified a -7/del(7q) MDS gene signature and altered differentiation, proliferative, and phosphatidylinositol 3-kinase (PI3K) signaling pathways. In functional assays, CUX1 maintained HSC quiescence and repressed proliferation. These homeostatic changes occurred in parallel with decreased expression of the PI3K inhibitor, Pik3ip1, and elevated PI3K/AKT signaling upon CUX1 knockdown. Our data support a model wherein CUX1 knockdown promotes PI3K signaling, drives HSC exit from quiescence and proliferation, and results in HSC exhaustion. Our results also demonstrate that reduction of a single 7q gene, Cux1, is sufficient to cause MDS in mice.


Subject(s)
Gene Dosage , Hematopoiesis , Hematopoietic Stem Cells/pathology , Homeodomain Proteins/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Nuclear Proteins/genetics , Repressor Proteins/genetics , Anemia/genetics , Anemia/pathology , Anemia/physiopathology , Animals , Cell Proliferation , Cellular Senescence , Disease Models, Animal , Gene Knockdown Techniques , Humans , Mice , Myelodysplastic Syndromes/physiopathology
2.
J Mol Evol ; 81(5-6): 218-24, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26407964

ABSTRACT

Deoxyribozymes (DNA enzymes) have been developed for a growing variety of chemical reactions, including with peptide substrates. We recently described the first tyrosine kinase deoxyribozymes, which lacked the ability to discriminate among peptide substrates on the basis of the amino acids surrounding the tyrosine residue. Those deoxyribozymes were identified by in vitro selection using a DNA-anchored peptide substrate in which the residues neighboring tyrosine were all alanine. Here, we performed in vitro selection for tyrosine kinase activity using three peptide substrates in which the neighboring residues included a variety of side chains. For one of these three peptides, we found numerous deoxyribozymes that discriminate strongly in favor of phosphorylating tyrosine when the surrounding residues are specifically those used in the selection process. Three different short peptide sequence motifs of 2-4 amino acids were required for catalysis by three unique deoxyribozymes. For a second peptide substrate, the selection process led to one deoxyribozyme which exhibits partial discrimination among peptide sequences. These findings establish the feasibility of identifying DNA enzymes that catalyze sequence-selective tyrosine phosphorylation, which suggests the downstream practical utility of such deoxyribozymes. More broadly, this outcome reinforces the conclusion that nucleic acid catalysts can discriminate among peptide substrates in the context of biochemically relevant reactions.


Subject(s)
DNA, Catalytic/metabolism , Protein-Tyrosine Kinases/metabolism , Peptides/metabolism , SELEX Aptamer Technique , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...