Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11925, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789447

ABSTRACT

Defects within chip solder joints are usually inspected visually for defects using X-ray imaging to obtain images. The phenomenon of voids inside solder joints is one of the most likely types of defects in the soldering process, and accurate detection of voids becomes difficult due to their irregular shapes, varying sizes, and defocused edges. To address this problem, an X-ray void image segmentation algorithm based on improved PCB-DeepLabV3 is proposed. Firstly, to meet the demand for lightweight and easy deployment in industrial scenarios, mobilenetv2 is used as the feature extraction backbone network of the PCB-DeepLabV3 model; then, Attentional multi-scale two-space pyramid pooling network (AMTPNet) is designed to optimize the shallow feature edges and to improve the ability to capture detailed information; finally, image cropping and cleaning methods are designed to enhance the training dataset, and the improved PCB-DeepLabV3 is applied to the training dataset. The improved PCB-DeepLabV3 model is used to segment the void regions within the solder joints and compared with the classical semantic segmentation models such as Unet, SegNet, PSPNet, and DeeplabV3. The proposed new method enables the solder joint void inspection to get rid of the traditional way of visual inspection, realize intelligent upgrading, and effectively improve the problem of difficult segmentation of the target virtual edges, to obtain the inspection results with higher accuracy.

2.
iScience ; 27(3): 109147, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38433901

ABSTRACT

Aiming at the current SPI (solder paste inspection) system for printing solder paste similar defects detection accuracy is not high, the system intelligence degree is low and so on, design a for the solder paste similar defects and combined with phase modulation profile measurement technique and improve the YOLOX intelligent detection system. The core of the system is the improved YOLOX depth model based on s-mosica and kt-iou algorithms proposed in this paper. The experimental results show that the proposed s-mosica and kt-iou algorithms can effectively improve the detection accuracy of printed solder paste, and when combined with the YOLOX model, the best 90.33% detection accuracy is obtained, which is better than the detection performance of the existing algorithms in the same scenario, and it provides an effective and feasible reference program for the design of the SPI high-precision intelligent detection system.

3.
Heliyon ; 9(6): e16478, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484298

ABSTRACT

The role of chemokines in predicting the prognosis of colon cancer has not been mentioned. Chemokines have been shown to be associated with immune cell chemotaxis and activation, so the expression of chemokine genes in tumor tissue may be related to prognosis. We used a least absolute shrinkage and selection operator (LASSO) model based on chemokine gene families to construct a model that can predict the prognosis of colon cancer patients. We divided patients into high-risk groups and low-risk groups to study the prognosis. Then, we evaluated the relationship between the different risk groups in infiltration of immune cells. It was found that there was less immune cell infiltration in the high-risk group. We conducted a functional enrichment analysis based on model stratification, and explored the biological signal pathways enriched in the high and low-risk groups, which provided ideas for studying the mechanism behind its impact on prognosis. In addition, the chemokine-related gene signature could predict the response of patients to immunotherapy and chemotherapy.

4.
Int Wound J ; 20(10): 4300-4307, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37493021

ABSTRACT

By conducting a meta-analysis of relevant clinical studies on the treatment of advanced gastric cancer (GC) using laparoscopic and open surgeries, we aimed to evaluate the impact of these two surgical approaches on postoperative surgical site infections (SSIs) in patients with advanced GC. We aimed to provide evidence-based support for preventing SSIs in postoperative patients with advanced GC. From database establishment until May 2023, we systematically searched PubMed, Cochrane Library, MEDLINE, Embase, China National Knowledge Infrastructure, and Wanfang Data databases for relevant studies comparing laparoscopic and open surgeries for the treatment of advanced GC. Two researchers independently performed the literature screening and data extraction based on predefined inclusion and exclusion criteria. The meta-analysis was conducted using STATA 17.0. Twenty articles involving 3084 patients met the inclusion criteria, including 1462 patients in the laparoscopic group and 1622 cases in the open surgery group. The meta-analysis results revealed that the incidence of postoperative SSIs was significantly lower in the laparoscopic group than in the open surgery group (odds ratio = 0.341, 95% confidence interval: 0.219-0.532, p < 0.001). The current evidence indicates that laparoscopic radical gastrectomy can significantly reduce the incidence of postoperative site infections in patients with advanced GC.


Subject(s)
Laparoscopy , Stomach Neoplasms , Humans , Surgical Wound Infection/etiology , Surgical Wound Infection/prevention & control , Surgical Wound Infection/surgery , Stomach Neoplasms/surgery , Gastrectomy/adverse effects , Gastrectomy/methods , Laparoscopy/adverse effects , Laparoscopy/methods , China/epidemiology
5.
Clin Exp Med ; 23(6): 1933-1944, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36735207

ABSTRACT

Despite increasing interest in the study of circulating tumor cells (CTC) subsets, especially epithelial-mesenchymal transition (EMT) and stem cells subsets of CTC that play a key role in tumor recurrence and metastasis, there is no evidence from meta-analyses that shows the correlation between stem-like CTCs and prognosis in cancer patients. Thus, we performed a meta-analysis to assess its prognostic value. Sixteen articles were screened by searching the PubMed, Embase, Cochrane, China National Knowledge Internet (CNKI) and Wanfang databases. The hazard ratio (HR) and 95% confidence interval (95% CI) extracted from each article were summarized. Patients with positive stem-like CTCs in peripheral blood had significantly shorter overall survival (OS, HR: 2.58, 95% CI 1.76-3.79, P < 0.00001), progression-free survival (PFS, HR: 2.21, 95% CI 1.26-3.89, P = 0.006) and disease-free survival (DFS, HR: 2.53, 95% CI: 1.12-5.70, P = 0.03). This study provides the first meta-analysis evidence for the prognostic value of stem-like CTCs, demonstrating that these cells are associated with poor prognosis in cancer patients.Systematic review registrationCRD42022322062.


Subject(s)
Neoplastic Cells, Circulating , Humans , Prognosis , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor , Neoplasm Recurrence, Local , Disease-Free Survival
6.
Theranostics ; 12(17): 7371-7389, 2022.
Article in English | MEDLINE | ID: mdl-36438484

ABSTRACT

Rationale: Oncolytic virus (OV) therapy as a cancer therapy that improves immune status makes it a favorable candidate for optimizing immunotherapy strategies. Existing studies have focused on characterizing the disturbance of the tumor microenvironment (TME) by OV therapy. However, the changes in systemic immunity induced by OV were largely ignored, which would prevent the further understanding and optimization of oncolytic viruses. Methods: The HSV-2-based oncolytic virus OH2 was used to treat tumor-bearing mouse models. The peripheral blood samples were then collected for single-cell RNA sequencing (scRNA-seq). The scRNA-seq data were analyzed using Cell Ranger, Seurat, and other bioinformatics tools. Key findings were further validated by ELISA, immunohistochemistry, flow cytometry, in vivo experiments, and clinical samples. Results: Our data showed that OH2 therapy effectively activated systemic immunity and induced a sustained anti-tumor immune response. One major impact of OH2 on systemic immunity was to boost Ccl5 production, which correlated with clinical response. Besides, the cytotoxic ability of peripheral cytotoxic Cd8+ T cells and mature NK cells was elevated by OH2. Further analysis revealed that the interaction of monocytes with T cells and NK cells was critical for systemic immune remodeling and activation. We also found that systemic immune responses induced by OH2 could effectively reshape the microenvironment of distant tumor lesions and inhibit their progression. Conclusions: This study is the first to comprehensively characterize the effects of OV therapy on systemic immunity, which not only sheds new light on the anti-tumor mechanisms of OH2, but also contributes to the establishment of companion diagnostics for OH2 treatment and the improvement of oncolytic therapy strategies.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Mice , Animals , Transcriptome , Oncolytic Viruses/genetics , Immunotherapy , Tumor Microenvironment , Neoplasms/pathology
7.
BMC Med ; 20(1): 376, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36310169

ABSTRACT

BACKGROUND: The combination of oncolytic viruses (OVs) with immune checkpoint blockades is a research hotspot and has shown good efficacy. Here, we present the first attempt to combine oncolytic herpes simplex virus 2 (OH2) with an anti-SIRPα antibody as an antitumour treatment. Our results provide unique insight into the combination of innate immunity with OV. METHODS: We verified the polarization and activation of OH2 in RAW264.7 cells in vitro. Subsequently, we evaluated the antitumour ability of OH2 and anti-SIRPα combined therapy in a tumour-bearing mouse model. RNA-seq and Single-cell RNA-seq were used to characterize the changes in the tumour microenvironment. RESULTS: The OH2 lysates effectively stimulated RAW264.7 cells to polarize towards the M1 but not the M2 phenotype and activated the function of the M1 phenotype in vitro. In the macrophage clearance experiment, OH2 therapy induced polarization of M1 macrophages and participated in the antitumour immune response in a tumour-bearing mouse model. Treatment with a combination of OH2 and anti-SIRPα effectively inhibited tumour growth and significantly prolonged the survival time of the mice, and this result was more obvious in the mouse model with a larger tumour volume at the beginning of the treatment. These results suggest that combination therapy can more profoundly reshape the TME and activate stronger innate and adaptive immune responses. CONCLUSIONS: Our data support the feasibility of oncolytic virus therapy in combination with anti-SIRPα antibodies and suggest a new strategy for oncolytic virus therapy.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Mice , Animals , Oncolytic Viruses/genetics , Tumor Microenvironment , Oncolytic Virotherapy/methods , Neoplasms/therapy , Immunity, Innate , Disease Models, Animal
8.
Transl Androl Urol ; 11(6): 803-813, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35812202

ABSTRACT

Background: Whether circulating tumor cells (CTCs) with prostate-specific membrane antigen (PSMA) high expression was related to the metastatic progress in prostate cancer (PCa) remains explored. This study aimed to provide evidence to elucidate this relationship via the telomerase reverse transcriptase (TERT)-based CTC detection method. Methods: A total of 71 patients were enrolled and divided into the local PCa group (n=44) and metastatic PCa group (n=27). TERT-based CTC detection (TBCD) was used to detect CTCs. CTCs single-cell sequencing data were analyzed using gene ontology (GO) functional classification and enrichment. Results: The mean 'TERT+ CTCs' number was 6.11±9.63 in the metastatic group and 4.09±3.41 in the local group. GO enrichment analysis for 77 prostate CTCs single-cell sequencing confirmed that proliferation-related terms were enriched in the PSMA-high expression group, and 27 metastasis-related gene panels also had high expression in this group. Then, PSMA antibody was applied to mark the 'TERT+ CTCs'. The proportion of patients with 'TERT+ PSMA+ CTCs' was positively associated with the Gleason score. Furthermore, the proportion of 'TERT+ PSMA+ CTCs' patients was 48.15% in the metastatic group, significantly higher than 22.72% in the local group. Conclusions: This study suggested that TERT positive CTCs with high PSMA expression were associated with the PCa metastatic progress.

9.
EClinicalMedicine ; 43: 101161, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35128360

ABSTRACT

BACKGROUND: Prostate-specific antigen (PSA) testing is limited in identifying prostate cancer (PCa) with modestly elevated PSA levels. Therefore, a robust method for the diagnosis of PCa is urgently needed. METHODS: A total of 203 men with a PSA level of ≥4 ng/ml were eligible for enrollment in this study from July 2018 to May 2021, and randomly divided into a training set (n=78) and a validation set (n=125). Circulating tumor cells (CTCs) were detected using telomerase-based CTC detection (TBCD), and the diagnostic ability was evaluated using receiver operating characteristic (ROC) and logistic regression analyses. FINDINGS: In the training set, the area under the curve (AUC) of CTCs was 0.842 with a sensitivity of 80.33% and specificity of 82.35%. In the validation set, the AUC of CTCs was 0.789, with a sensitivity of 79.31% and specificity of 81.58%. There was no significant difference between CTCs (AUC=0.793) and PSA (AUC=0.697) in the range of 4-50 ng/ml. In the ranges of 4-20 ng/ml and 4-10 ng/ml, the AUC of CTCs were 0.811 and 0.825, respectively, which were superior to the AUC of PSA (0.588 and 0.541). The sensitivity and specificity of CTCs in the three PSA groups were higher than 80%. Moreover, we further established a CTC+PSA combined model, which could significantly improve the diagnostic ability of a PSA level of '4-10 ng/ml'. INTERPRETATION: TBCD could be a valuable method for distinguishing PCa and benign prostatic disease, especially in the PSA diagnostic gray area of '4-10 ng/ml'.

10.
BMC Cancer ; 22(1): 84, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057760

ABSTRACT

Activated Cdc42-associated kinase 1 (ACK1), a kind of tyrosine kinase, is considered to be an oncogene in many cancers, and it is likely to become a potential target for cancer treatment. We found that the expression of the ACK1 gene in colon cancer was higher than that in normal tissues adjacent to cancer, and high expression of the ACK1 gene was associated with poor prognosis of patients. We assessed the prognosis of colon cancer based on ACK1-related genes and constructed a model that can predict the prognosis of colon cancer patients in colon cancer data from The Cancer Genome Atlas (TCGA) database. We then explored the relationship between ACK1 and the immune microenvironment of colon cancer. The overexpression of ACK1 might hinder the function of antigen-presenting cells. The colon cancer prognosis prediction model we constructed has certain significance for clinicians to judge the prognosis of patients with colon cancer. The expression of the ACK1 gene might affect the infiltration level of a variety of immune cells and immunomodulators in the immune microenvironment.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Protein-Tyrosine Kinases/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Colon/immunology , Colon/metabolism , Colonic Neoplasms/immunology , Databases, Genetic , Gene Expression/genetics , Humans , Inflammation , Predictive Value of Tests , Prognosis , Signal Transduction/genetics , Tumor Microenvironment/immunology
11.
Cell Death Discov ; 8(1): 6, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013129

ABSTRACT

Signet ring cell carcinoma (SRCC) has specific oncogenesis and phenotypic and treatment resistance heterogeneity. Systemic therapies are often ineffective, and predictive biomarkers to guide treatment are urgently needed. Tumor organoids have recently emerged as an ideal model for drug testing and screening. Here, we report gastric organoids established from tumor tissues comprising four SRCCs and eight non-SRCCs. Tumor organoids demonstrated different growth characteristics and morphologies. Changes in the original tumor genome were maintained during long-term culture from whole-exome sequencing (WES) analysis. Immunohistochemistry and H&E staining showed that the tissue characteristics of the primary tumor could be recapitulated. In addition, organoid lines successfully formed tumors in immunodeficient mice and maintained tumorigenic character. Different responses to 5-fluorouracil, oxaliplatin, docetaxel and irinotecan treatment were observed in SRCC and non-SRCC organoids. These results demonstrate that gastric organoid drug models, including SRCC, were highly similar to the original tumors in phenotypic and genotypic profiling and could be as living biomarkers for drug response testing.

12.
Rev Sci Instrum ; 92(9): 093506, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34598546

ABSTRACT

A two-color homodyne Mach-Zehnder (M-Z) optical fiber interferometer with wavelengths of 1.55 and 1.31 µm was developed for long-time measurement of line-integrated plasma electron density. A novel phase difference demodulation algorithm based on a single 3 × 3 optical coupler was implemented in a two-color optical fiber interferometer scheme for the first time. Our laboratory tests showed that this new optical fiber interferometer could determine the phase shift due to the low-frequency ambient vibration and could maintain high phase resolution measurement. The resolution of the new interferometer was less than 0.04 rad in 1000 s, corresponding to a line-averaged electron density of less than 1.0 × 1019 m-2. Actual plasma discharge experiments performed on KTX-CTI, which is a new compact torus injector (CTI) constructed at the Keda Torus eXperiment (KTX), showed that this interferometer has excellent several-second stability.

13.
Opt Lett ; 46(16): 3969-3972, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34388787

ABSTRACT

A number of applications require x rays of both high flux and narrow bandwidth. In this work, we experimentally demonstrate the high-efficiency generation of narrowband soft x rays from carbon nanotube foams irradiated by a femtosecond laser pulse at an intensity of 1019W/cm2. The building blocks of the foam, single-walled carbon nanotube bundles with diameters smaller than the laser skin length can be volumetrically heated and fully ionized on a femtosecond time scale. The three-dimensional network structure of the foam permits deep penetration and drastic absorption of the laser pulse, and results in bright line emissions without prominent Stark broadening. A single-shot yield of 3×1014photons in the carbon Lyα line at 3.37 nm was measured with a bandwidth of 0.013 nm.

14.
Oncoimmunology ; 10(1): 1938476, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34211802

ABSTRACT

Circulating tumor cells (CTCs) are considered to be related to the prognosis of cancer patients. CTC is a powerful indicator for recurrence or metastasis. The relationship, however, between the expression of programmed cell death receptor ligand 1 (PD-L1) on CTCs in peripheral blood and the prognosis, is still controversial. Here, we conducted a meta-analysis to evaluate its prognostic value. A total of 20 articles were screened from PubMed, Embase, Cochrane, China National Knowledge Internet (CNKI) and WanFang Database, and the Hazard Ratio (HR) along with 95% confidence intervals (CIs) of each article were combined to study the relationship between PD-L1 expression on CTCs and prognosis. The expression of PD-L1 on CTCs in the peripheral blood of cancer patients is associated with poor prognosis. The pooled HRs for overall survival (OS) in cancer patients were 1.85 (95% CI, 1.29-2.66, P = .001). The pooled HRs for progression-free survival (PFS) in cancer patients were 1.50 (95% CI, 1.12-2.01; P = .007). This is the first meta-analysis to clarify the expression of PD-L1 on CTCs at baseline affects the prognosis of cancer patients. Patients with CTCs expressing PD-L1 had a shorter survival time than patients with CTCs not expressing PD-L1.


Subject(s)
B7-H1 Antigen , Neoplasms/diagnosis , Neoplastic Cells, Circulating , B7-H1 Antigen/genetics , Biomarkers, Tumor/genetics , China , Humans , Neoplasm Recurrence, Local , Prognosis
15.
Front Cell Dev Biol ; 9: 672693, 2021.
Article in English | MEDLINE | ID: mdl-33996830

ABSTRACT

Cancer stem cell (CSC) is thought to be the major cause of radio-resistance and relapse post radiotherapy (RT). Recently ultra-high dose rate "FLASH-RT" evokes great interest for its decreasing normal tissue damages while maintaining tumor responses compared with conventional dose rate RT. However, the killing effect and mechanism of FLASH irradiation (FLASH-IR) on CSC and normal cancer cell are still unclear. Presently the radiation induced death profile of CSC and normal cancer cell were studied. Cells were irradiated with FLASH-IR (∼109 Gy/s) at the dose of 6-9 Gy via laser-accelerated nanosecond particles. Then the ratio of apoptosis, pyroptosis and necrosis were determined. The results showed that FLASH-IR can induce apoptosis, pyroptosis and necrosis in both CSC and normal cancer cell with different ratios. And CSC was more resistant to radiation than normal cancer cell under FLASH-IR. Further experiments tracing lysosome and autophagy showed that CSCs had higher levels of lysosome and autophagy. Taken together, our results suggested that the radio-resistance of CSC may associate with the increase of lysosome-mediated autophagy, and the decrease of apoptosis, necrosis and pyroptosis. To our limited knowledge, this is the first report shedding light on the killing effects and death pathways of CSC and normal cancer cell under FLASH-IR. By clarifying the death pathways of CSC and normal cancer cell under FLASH-IR, it may help us improve the understanding of the radio-resistance of CSC and thus help to optimize the future clinical FLASH treatment plan.

16.
Front Cell Dev Biol ; 9: 672929, 2021.
Article in English | MEDLINE | ID: mdl-33996831

ABSTRACT

Ultra-high dose rate FLASH irradiation (FLASH-IR) has got extensive attention since it may provide better protection on normal tissues while maintain tumor killing effect compared with conventional dose rate irradiation. The FLASH-IR induced protection effect on normal tissues is exhibited as radio-resistance of the irradiated normal cells, and is suggested to be related to oxygen depletion. However, the detailed cell death profile and pathways are still unclear. Presently normal mouse embryonic fibroblast cells were FLASH irradiated (∼109 Gy/s) at the dose of ∼10-40 Gy in hypoxic and normoxic condition, with ultra-fast laser-generated particles. The early apoptosis, late apoptosis and necrosis of cells were detected and analyzed at 6, 12, and 24 h post FLASH-IR. The results showed that FLASH-IR induced significant early apoptosis, late apoptosis and necrosis in normal fibroblast cells, and the apoptosis level increased with time, in either hypoxic or normoxic conditions. In addition, the proportion of early apoptosis, late apoptosis and necrosis were significantly lower in hypoxia than that of normoxia, indicating that radio-resistance of normal fibroblast cells under FLASH-IR can be enhanced by hypoxia. To further investigate the apoptosis related profile and potential pathways, mitochondria dysfunction cells resulting from loss of cytochrome c (cyt c-/-) were also irradiated. The results showed that compared with irradiated normal cells (cyt c+/+), the late apoptosis and necrosis but not early apoptosis proportions of irradiated cyt c-/- cells were significant decreased in both hypoxia and normoxia, indicating mitochondrial dysfunction increased radio-resistance of FLASH irradiated cells. Taken together, to our limited knowledge, this is the first report shedding light on the death profile and pathway of normal and cyt c-/- cells under FLASH-IR in hypoxic and normoxic circumstances, which might help us improve the understanding of the FLASH-IR induced protection effect in normal cells, and thus might potentially help to optimize the future clinical FLASH treatment.

17.
Opt Express ; 29(4): 5427-5436, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33726079

ABSTRACT

We demonstrate the high-efficiency generation of water-window soft x-ray emissions from polyethylene nanowire array targets irradiated by femtosecond laser pulses at the intensity of 4×1019 W/cm2. The experimental results indicate more than one order of magnitude enhancement of the water-window x-ray emissions from the nanowire array targets compared to the planar targets. The highest energy conversion efficiency from laser to water-window x-rays is measured as 0.5%/sr, which comes from the targets with the longest nanowires. Supported by particle-in-cell simulations and atomic kinetic codes, the physics that leads to the high conversion efficiency is discussed.

18.
Rev Sci Instrum ; 91(6): 063501, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32611014

ABSTRACT

An optical fiber Mach-Zehnder interferometer at a wavelength of 1.55 µm has been developed for measurements of high electron density on compact torus (CT) plasmas with a high time resolution of 0.1 µs and high phase resolution of 6.4 × 10-4 rad. To improve density measurement accuracy, the phase noise of the interferometer has been investigated in detail and optimized. In the bench test, the interferometer was calibrated using a piezoelectric ceramic actuator with known stroke. Initial results on CT plasma show that the optical fiber interferometer provides reliable density measurements at two spatial locations and the bulk velocity of plasma can be determined by the method of time of flight.

19.
Int J Mol Sci ; 21(3)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033113

ABSTRACT

Inositol polyphosphate 5-phosphatases (5PTases) function in inositol signaling by regulating the catabolism of phosphoinositol derivatives. Previous reports showed that 5PTases play a critical role in plant development and stress responses. In this study, we identified a novel 5PTase gene, Gs5PTase8, from the salt-tolerance locus of chromosome 3 in wild soybean (Glycine soja). Gs5PTase8 is highly up-regulated under salt treatment. It is localized in the nucleus and plasma membrane with a strong signal in the apoplast. Ectopic expression of Gs5PTase8 significantly increased salt tolerance in transgenic BY-2 cells, soybean hairy roots and Arabidopsis, suggesting Gs5PTase8 could increase salt tolerance in plants. The overexpression of Gs5PTase8 significantly enhanced the activities of catalase and ascorbate peroxidase under salt stress. The seeds of Gs5PTase8-transgenic Arabidopsis germinated earlier than the wild type under abscisic acid treatment, indicating Gs5PTase8 would alter ABA sensitivity. Besides, transcriptional analyses showed that the stress-responsive genes, AtRD22, AtRD29A and AtRD29B, were induced with a higher level in the Gs5PTase8-transgenic Arabidopsis plants than in the wild type under salt stress. These results reveal that Gs5PTase8 play a positive role in salt tolerance and might be a candidate gene for improving soybean adaptation to salt stress.


Subject(s)
Ectopic Gene Expression/genetics , Glycine max/genetics , Inositol Polyphosphate 5-Phosphatases/genetics , Plant Proteins/genetics , Salt Tolerance/genetics , Arabidopsis/genetics , Ascorbate Peroxidases/genetics , Catalase/genetics , Cell Membrane/genetics , Gene Expression Regulation, Plant/genetics , Germination/genetics , Plant Roots/genetics , Plants, Genetically Modified/genetics , Seeds/genetics , Stress, Physiological/genetics , Up-Regulation/genetics
20.
Open Life Sci ; 15(1): 871-883, 2020.
Article in English | MEDLINE | ID: mdl-33817274

ABSTRACT

BACKGROUND: Osteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed. METHODS: Cell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo. RESULTS: Autophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo. CONCLUSIONS: SNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...