Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Hazard Mater ; 471: 134342, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678705

ABSTRACT

The accumulation of microplastics in reservoirs due to river damming has drawn considerable attention due to their potential impacts on elemental biogeochemical cycling at the watershed scale. However, the effects of plastisphere communities on the sulfur cycle in the large deep-water reservoir remain poorly understood. Here, we collected microplastics and their surrounding environmental samples in the water and sediment ecosystems of Xiaowan Reservoir and found a significant spatiotemporal pattern of microplastics and sulfur distribution in this Reservoir. Based on the microbial analysis, plastic-degrading taxa (e.g., Ralstonia, Rhodococcus) involved in the sulfur cycle were enriched in the plastisphere of water and sediment, respectively. Typical thiosulfate oxidizing bacteria Limnobacter acted as keystone species in the plastisphere microbial network. Sulfate, oxidation reduction potential and organic matter drove the variations of the plastisphere. Environmental filtration significantly affected the plastisphere communities, and the deterministic process dominated the community assembly. Furthermore, predicted functional profiles related to sulfur cycling, compound degradation and membrane transport were significantly enriched in the plastisphere. Overall, our results suggest microplastics as a new microbial niche exert different effects in water and sediment environments, and provide insights into the potential impacts of the plastisphere on the sulfur biogeochemical cycle in the reservoir ecosystem.


Subject(s)
Geologic Sediments , Microplastics , Sulfur , Water Pollutants, Chemical , Sulfur/metabolism , Microplastics/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/classification , China
2.
Environ Res ; 245: 117971, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38145740

ABSTRACT

In this study, activated carbon (WS-AC) was prepared from walnut shell. Nano-zero-valent iron (nZVI) was loaded on walnut shell activated carbon by liquid phase reduction method and used as catalyst (WS-AC/nZVI) to activate peroxymonosulfate (PMS) to efficiently degrade tetracycline (TC) in solution. The composite material with a mass ratio of WS-AC to nZVI of 1:1 has the highest catalytic performance for activating PMS to degrade TC. The results showed that under the conditions of TC concentration of 100 ppm, PMS dosage of 0.2 mM and WS-AC/nZVI dosage of 0.1 g/L, the removal efficiency of TC could reach 81%. Based on quenching experiments and electron spin resonance (EPR), it was verified that •OH, SO4•- and 1O2 bound on the catalyst surface were the main reactive oxygen species during the reaction. The intermediate products of TC were identified by liquid chromatography-mass spectrometry (HPLC-MS) and DFT calculation, and the possible degradation pathway of TC was proposed. The catalyst still maintained high removal efficiency of TC after four cycles of experiments, and the minimal iron loss on the surface of the catalyst indicated that it had good stability. The efficient and stable WS-AC/nZVI activated PMS showed great potential in the degradation of antibiotics.


Subject(s)
Juglans , Peroxides , Water Pollutants, Chemical , Charcoal , Iron/chemistry , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents , Tetracycline/chemistry
3.
J Hazard Mater ; 456: 131689, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37245372

ABSTRACT

In this study, Fe2O3 nanoparticles (Fe2O3 NPs) and CaO NPs were loaded on the zeolite sphere carrier to create nano Fe-Ca bimetallic oxide (Fe-Ca-NBMO) modified substrate, which was introduced into constructed wetland (CW) to remove Cu(II) and Ni(II) via constructing "substrate-microorganism" system. Adsorption experiments showed that the equilibrium adsorption capacities of Fe-Ca-NBMO modified substrate for Cu(II) and Ni(II) were respectively 706.48 and 410.59 mg/kg at an initial concentration of 20 mg/L, 2.45 and 2.39 times of gravel. The Cu(II) and Ni(II) removal efficiencies in CW with Fe-Ca-NBMO modified substrate respectively reached 99.7% and 99.9% at an influent concentration of 100 mg/L, significantly higher than those in gravel-based CW (47.0% and 34.3%). Fe-Ca-NBMO modified substrate could promote Cu(II) and Ni(II) removal by increasing electrostatic adsorption, chemical precipitation, as well as the abundances of resistant microorganisms (Geobacter, Desulfuromonas, Zoogloea, Dechloromonas, and Desulfobacter) and functional genes (copA, cusABC, ABC.CD.P, gshB, and exbB). This study provided an effective method to enhance Cu(II) and Ni(II) removal of electroplating wastewater by CW with Fe-Ca-NBMO modified substrate.

4.
Sci Total Environ ; 881: 163423, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37062319

ABSTRACT

Excessive accumulation of extracellular polymeric substances (EPS) in constructed wetland (CW) substrate can lead to bio-clogging and affect the long-term stable operation of CW. In this study, a microbial fuel cell (MFC) was coupled with air-photocathode to mitigate CW bio-clogging by enhancing the micro-electric field environment. Because TiO2/biochar could catalyze and accelerate oxygen reduction reaction, further promoting the gain of electric energy, the electricity generation of the tandem CW-photocatalytic fuel cell (CW-PFC) reached 90.78 mW m-3. After bio-clogging was mitigated in situ in tandem CW-PFC, the porosity of CW could be restored to about 62.5 % of the initial porosity, and the zeta potential of EPS showed an obvious increase (-14.98 mV). The removal efficiencies of NH4+-N and chemical oxygen demand (COD) in tandem CW-PFC were respectively 31.8 ± 7.2 % and 86.1 ± 6.8 %, higher than those in control system (21.1 ± 11.0 % and 73.3 ± 5.6 %). Tandem CW-PFC could accelerate the degradation of EPS into small molecules (such as aromatic protein) by enhancing the electron transfer. Furthermore, microbiome structure analysis indicated that the enrichment of characteristic microorganisms (Anaerovorax) for degradation of protein-related pollutants, and electroactive bacteria (Geobacter and Trichococcus) promoted EPS degradation and electron transfer. The degradation of EPS might be attributed to the up-regulation of the abundances of carbohydrate and amino acid metabolism. This study provided a promising new strategy for synergic mitigation and prevention of bio-clogging in CW by coupling with MFC and photocatalysis.


Subject(s)
Bioelectric Energy Sources , Wetlands , Wastewater , Electrodes , Electricity
5.
Environ Pollut ; 316(Pt 2): 120693, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36402418

ABSTRACT

Soil drought and nitrogen (N) deposition can influence the biogenic volatile organic compound (BVOC) emissions and thereby their ozone (O3) and secondary organic aerosol (SOA) formation. This study addressed their single and combined effects on BVOC emissions of Pinus thunbergii by laboratory simulation experiments. The results showed that light drought (LD, 50% soil volumetric water content (VWC)) stimulated isoprene, monoterpene, sesquiterpene, and total BVOC emissions, while moderate drought (MD, 30% and 40% VWC) and severe drought (SD, 10% and 20% VWC) inhibited their emissions (except for sesquiterpene in 20% VWC). N deposition decreased other VOC emissions and increased isoprene and sesquiterpene emissions. Total BVOCs and monoterpene were stimulated in low N deposition (LN, 2 g N/(m2·yr)) and inhibited in moderate (MN, 5 g N/(m2·yr)) and high N deposition (HN, 10 g N/(m2·yr)). Under combined treatment of soil drought and N deposition, total BVOC, monoterpene, and other VOC emissions were inhibited, sesquiterpene had no significant change, and isoprene emission was inhibited in MD combined treatment but promoted in SD. The O3 formation potential (OFP) and SOA formation potential (SOAP) from the changed BVOC emissions were calculated, OFP and SOAP of BVOC emissions and their compositions varied significantly among the treatments. Our study provided theoretical basis for assessing the impact of climate change and atmospheric pollution on BVOC emissions and their contribution to the formation of secondary atmospheric pollution.


Subject(s)
Pinus , Volatile Organic Compounds , Nitrogen , Soil , Droughts , Aerosols , Water , Monoterpenes
6.
Bioresour Technol ; 368: 128337, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36403915

ABSTRACT

This study established an integrated loach-plant-substrate-microbes non-aerated saturated vertical flow constructed wetlands (VFCWs) to enhance pollutants removal efficiencies and reduce greenhouse gas emissions simultaneously. The results of the VFCWs experiment indicated that the removal efficiencies of chemical oxygen demand, total phosphorous, and total nitrogen in loach systems were significantly higher than those of non-loach systems, achieving 59.16%, 35.98%, and 40.96%, respectively. The CH4 and N2O emission fluxes were also significantly reduced in the integrated system, resulting in lower global warming potential (GWP) and GWP per unit of pollutants removal. Loaches promoted the transportation of oxygen, facilitated the re-contact and utilization of sediments, reduced CH4 emission, and enhanced nitrogen conversion and phosphorus accumulation. Increased bioavailable carbon and nitrate-nitrogen in the integrated system improved the abundance of denitrifying bacteria, which supported complete denitrification, reducing N2O emissions with high pollutant removal.


Subject(s)
Cypriniformes , Environmental Pollutants , Greenhouse Gases , Animals , Wetlands , Nitrogen , Phosphorus
7.
J Environ Sci (China) ; 125: 568-581, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36375939

ABSTRACT

In this study, the biochar (BC) produced from sawdust, sludge, reed and walnut were used to support sulfidation of nano-zero-valent-iron (S-nZVI) to enhance nitrate (NO3--N) removal and investigate the impact on greenhouse gas emissions. Batch experiment results showed the S-nZVI/BCsawdust (2:1, 500), S-nZVI/BCsludge (2:1, 900), S-nZVI/BCreed (2:1, 700), and S-nZVI/BC walnut (2:1, 700) respectively improved NO3--N removal efficiencies by 22%, 20%, 3% and 0.1%, and the selectivity toward N2 by 22%, 25%, 22% and 18%. S-nZVI uniformly loaded on BC provided electrons for the conversion of NO3--N to N2 through Fe0. At the same time, FeSx layer was formed on the outer layer of ZVI in the sulfidation process to prevent iron oxidation, so as to improve the electrons utilization efficiency After adding four kinds of S-nZVI/BC into constructed wetlands (CWs), the NO3--N removal efficiencies could reach 100% and the N2O emission fluxes were reduced by 24.17%-36.63%. And the average removal efficiencies of TN, COD, TP were increased by 21.9%, -16.5%, 44.3%, repectively. The increasing relative abundances of denitrifying bacteria, such as Comamonas and Simplicispira, suggested that S-nZVI/BC could also improve the process of microbial denitrification. In addition, different S-nZVI/BC had different effects on denitrification functional genes (narG, nirk, nirS and nosZ genes), methanotrophs (pmoA) and methanogenesis (mcrA). This research provided an effective method to improve NO3--N removal and reduce N2O emission in CWs.


Subject(s)
Greenhouse Gases , Wetlands , Nitrates , Iron , Sewage , Charcoal , Nitrogen Oxides
8.
Ecol Appl ; : e2741, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36103141

ABSTRACT

Plant invasions cause a fundamental change in soil organic matter (SOM) turnover. Disentangling the biogeographic patterns and key drivers of SOM decomposition and its temperature sensitivity (Q10 ) under plant invasion is a prerequisite for making projections of global carbon feedback. We collected soil samples along China's coast across saltmarshes to mangrove ecosystems invaded by the smooth cordgrass (Spartina alterniflora Loisel.). Microcosm experiments were carried out to determine the patterns of SOM decomposition and its thermal response. Soil microbial biomass and communities were also characterized accordingly. SOM decomposition constant dramatically decreased along the mean annual temperature gradient, whereas the cordgrass invasion retarded this change (significantly reduced slope, p < 0.05). The response of Q10 to invasion and the soil microbial quotient peaked at midlatitude saltmarshes, which can be explained by microbial metabolism strategies. Climatic variables showed strong negative controls on the Q10 , whereas dissolved carbon fraction exerted a positive influence on its spatial variance. Higher microbial diversity appeared to weaken the temperature-related response of SOM decomposition, with apparent benefits for carbon sequestration. Inconsistent responses to invasion were exhibited among habitat types, with SOM accumulation in saltmarshes but carbon loss in mangroves, which were explained, at least in part, by the SOM decomposition patterns under invasion. This study elucidates the geographic pattern of SOM decomposition and its temperature sensitivity in coastal ecosystems and underlines the importance of interactions between climate, soil, and microbiota for stabilizing SOM under plant invasion.

9.
Front Genet ; 13: 933009, 2022.
Article in English | MEDLINE | ID: mdl-35938010

ABSTRACT

Lung cancer is one of the leading causes of cancer-related deaths. Thus, it is important to find its biomarkers. Furthermore, there is an increasing number of studies reporting that long noncoding RNAs (lncRNAs) demonstrate dense linkages with multiple human complex diseases. Inferring new lncRNA-disease associations help to identify potential biomarkers for lung cancer and further understand its pathogenesis, design new drugs, and formulate individualized therapeutic options for lung cancer patients. This study developed a computational method (LDA-RLSURW) by integrating Laplacian regularized least squares and unbalanced bi-random walk to discover possible lncRNA biomarkers for lung cancer. First, the lncRNA and disease similarities were computed. Second, unbalanced bi-random walk was, respectively, applied to the lncRNA and disease networks to score associations between diseases and lncRNAs. Third, Laplacian regularized least squares were further used to compute the association probability between each lncRNA-disease pair based on the computed random walk scores. LDA-RLSURW was compared using 10 classical LDA prediction methods, and the best AUC value of 0.9027 on the lncRNADisease database was obtained. We found the top 30 lncRNAs associated with lung cancers and inferred that lncRNAs TUG1, PTENP1, and UCA1 may be biomarkers of lung neoplasms, non-small-cell lung cancer, and LUAD, respectively.

10.
J Environ Manage ; 319: 115639, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35834854

ABSTRACT

Spartina alterniflora, a highly invasive plant, has caused a serious threat to ecosystem biodiversity and economic development in coastal areas of many countries. In this study, the allelopathic effect of Ulva prolifera extracts on seed germination and seedling growth of S. alterniflora was studied. The results showed that three different treatments (water, methanol and ethyl acetate extract) could inhibit the seed germination and seedling growth of S. alterniflora by reducing the germination proportion and germination index of seeds, decreasing the seedling length and root length of seedlings, and affecting the lipid peroxidation and enzyme activity. The higher the concentration of the extracts, the higher the inhibition effect. When the aqueous extract concentration reached 0.20 g/mL, the germination proportion of S. alterniflora decreased to 49.53% of the control. RNA-seq analysis showed that the expression of genes related to amino acid metabolism and photosynthesis were both upregulated, and genes related to energy generation and metabolism were both downregulated after adding the extracts. GC-MS analysis indicated that the U. prolifera extract was rich in organic acids, alcohols and esters, among which butanoic acid, butyl ester, Valine and Hexanedioic acid, bis (2-ethylhexyl) ester might be the dominant allelochemicals. In order to facilitate field dosing, prolong action time and control release effect, PVA/SA hydrogel embedded U. prolifera extract was used to obtain a sustained-release agent. In addition, the survival rate of S. alterniflora was significantly reduced, which was only 21.67% at the salinity of 30 ppt. The results of this study provide a feasible method for controlling the invasion of S. alterniflora and achieving the waste utilization of U. prolifera.


Subject(s)
Ulva , Ecosystem , Esters/pharmacology , Germination , Poaceae/physiology , Seedlings
11.
Sci Total Environ ; 835: 155463, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35472351

ABSTRACT

Soil inorganic carbon (SIC) is an important component of the soil C reservoir, and its dynamic change is associated with global climate change. However, few studies have been conducted to quantitatively explore the response of SIC content to different anthropogenic activities and their interactions with edaphic and climatic factors as well as the relative importance of each influencing factor. Here, we addressed these knowledge gaps by combining meta-analysis and the random forest (RF) model, based on data compiled from 101 studies. The quantitative effects of anthropogenic, edaphic, and climatic factors and their interactions on SIC content were first examined using the meta-analysis method, and then the relative importance of each examined factor was further determined using the RF model. The results demonstrated that SIC content significantly increased by 6.55% and 9.25% for cultivation and land use change, respectively, compared with that of the control, regardless of any influencing factors. Moreover, the grand mean changes in SIC content due to anthropogenic activities were found to be greatly affected by varied climatic, edaphic, and practical factors. In addition, the relative importance of each factor examined was ordered as follows: pH (18.2%) > soil type (16.4%) > mean annual precipitation (16.3%) > bulk density (15.2%) > soil depth (13.4%) > mean annual temperature (13.0%) > land use type (7.52%). Our study suggests that a combination of meta-analysis and RF model is a powerful method for systematically exploring dynamic changes in SIC content.


Subject(s)
Carbon , Soil , Carbon/chemistry , Climate Change , Soil/chemistry
12.
Front Oncol ; 12: 843879, 2022.
Article in English | MEDLINE | ID: mdl-35252012

ABSTRACT

As a major reason for tumor metastasis, circulating tumor cell (CTC) is one of the critical biomarkers for cancer diagnosis and prognosis. On the one hand, CTC count is closely related to the prognosis of tumor patients; on the other hand, as a simple blood test with the advantages of safety, low cost and repeatability, CTC test has an important reference value in determining clinical results and studying the mechanism of drug resistance. However, the determination of CTC usually requires a big effort from pathologist and is also error-prone due to inexperience and fatigue. In this study, we developed a novel convolutional neural network (CNN) method to automatically detect CTCs in patients' peripheral blood based on immunofluorescence in situ hybridization (imFISH) images. We collected the peripheral blood of 776 patients from Chifeng Municipal Hospital in China, and then used Cyttel to delete leukocytes and enrich CTCs. CTCs were identified by imFISH with CD45+, DAPI+ immunofluorescence staining and chromosome 8 centromeric probe (CEP8+). The sensitivity and specificity based on traditional CNN prediction were 95.3% and 91.7% respectively, and the sensitivity and specificity based on transfer learning were 97.2% and 94.0% respectively. The traditional CNN model and transfer learning method introduced in this paper can detect CTCs with high sensitivity, which has a certain clinical reference value for judging prognosis and diagnosing metastasis.

13.
J Environ Manage ; 312: 114913, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35306418

ABSTRACT

A novel electrochemical active biofilms constructed wetland (NEAB-CW) was built to enhance the treatment efficiency for domestic sewage under low temperature environment (0-15 °C). In NEAB-CW, the traditional matrixes were replaced with conductive layer, in which laid stainless steel mesh tubes (SSMT) and added slow-release oxygen matrixes (SROM) and zero-valent iron rod (IR) were used to build a bioelectrochemical activity biofilms system. According to the results of 180 d experiment, the removal efficiencies of COD, NH4+-N and TP of NEAB-CW were 1.52 and 2.21, 2.97 and 1.68, 3.95 and 1.76 times higher than the CW without SROM and IR at 10-20 and 0-10 °C, respectively. The transverse and longitudinal electric potential (EP) variations in NEAB-CW improved microbial activities under low temperature by enhancing the electron transfer efficiency, resulting in higher and stable EP and electron currents density, as well as protein-like contents secreted from biofilms. The pollutant-degrading microorganisms (e.g., Clostridia, Simplicispira), low temperature-resistant microorganisms (e.g., Psychrobacter, Acinetobacter), and electrochemical active microorganisms (e.g., Negativicutes, Gammaproteobacteria) obviously accumulated in NEAB-CW under low temperature environment to generate electricity and degrade pollutants. The results provided a good choice to treat domestic sewage at 0-15 °C by using NEAB-CW.


Subject(s)
Bioelectric Energy Sources , Environmental Pollutants , Water Purification , Biofilms , Sewage , Temperature , Wastewater/chemistry , Wetlands
14.
Sci Total Environ ; 806(Pt 4): 151439, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34742793

ABSTRACT

Biochar is considered as a promising additive with multi-benefits to compost production. However, how the biochar properties and composting conditions affect the composting process and quality and ecological risk of compost is still unclear. In the present study, we conducted a global meta-analysis based on 876 observations from 84 studies. Overall, regardless of biochar properties and composting conditions, biochar addition could significantly increase the pH (5.90%), germination index (26.6%), contents of nitrate nitrogen (56.6%), total nitrogen (9.50%), and total potassium (10.1%), and degree of polymerization (29.4%) while decrease the electrical conductivity (-5.70%), contents of ammonium nitrogen (-33.7%), bioavailable zinc (-22.9%), and bioavailable copper (-38.6%), and emissions of ammonia (-44.2%), nitrous oxide (-68.4%), and methane (-61.7%). Other compost indicators, including the carbon to nitrogen ratio and total phosphorus content, were found to be insignificantly affected by biochar addition. The responses of tested compost indicators affected by the biochar properties and composting conditions were further explored, based on which the addition of straw biochars at a rate of 10-15% was recommended due to its greater potential to improve quality of compost and reduce its ecological risk. Combining the results of linear regression analysis and structural equation model, the increase in compost pH caused by biochar addition was identified as the key mechanism for the increased nutrient content and decreased heavy metal bioavailability. These results could guide us to choose suitable kinds of biochar or develop engineered biochars with specific functionality to realize an optimal compost production mode.


Subject(s)
Composting , Charcoal , Nitrogen/analysis , Soil
15.
Sci Total Environ ; 813: 152617, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34963588

ABSTRACT

Microplastic, a well-documented emerging contaminant, is widespread in aquatic environments resulting from the production and fragmentation of large plastics items. The knowledge about the chronic toxic effects and behavioral toxicity of microplastics, particularly on freshwater benthic macroinvertebrates, is limited. In this study, adult Asian clams (Corbicula fluminea) were exposed to gradient microplastic solutions for 42 days to evaluate behavioral toxicity and chronic biotoxicity. The results showed that microplastics caused behavior toxicity, oxidative stress, and tissue damage in high-concentration treatments. Siphoning, breathing, and excretion was significantly inhibited (p < 0.05) at high-concentration treatments, suggesting that high-concentration microplastics induced behavioral toxicity in C. fluminea. Malondialdehyde content, superoxide dismutase, catalase, and glutathione reductase activities were significantly enhanced (p < 0.05) and the acetylcholinesterase was significantly inhibited (p < 0.05) throughout the exposure period in high-concentration treatments. Enzymes associated with energy supply were significantly higher at high-concentration microplastics treatments on D7 and D21. However, they recovered to a normal level on D42. The instability of the enzymes indicated that high-concentration microplastics induced oxidative stress and disorder in neurotransmission and energy supply. The gills of C. fluminea in treatments underwent cilia degeneration, which indicated that microplastics caused tissue damage in the gills. The analysis of integrated biomarker response values revealed that high-concentration microplastics led to long-term effects on the health of C. fluminea. In conclusion, continuous exposure to microplastics (10 mg L-1) would damage physical behavior and the antioxidant system of C. fluminea.


Subject(s)
Corbicula , Water Pollutants, Chemical , Acetylcholinesterase , Animals , Microplastics , Plastics/toxicity , Polystyrenes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
16.
Chinese Journal of School Health ; (12): 510-513, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-924090

ABSTRACT

Objective@#To understand the current situation and demand school health education in five areas across China, and to provide theoretical support for further revision and improvement on school health education.@*Methods@#Stratified multi stage cluster sampling was adopted. A total of 4 052 students were selected from five areas across China [Urumqi( n =1 295), Haikou City( n =448), Shijiazhuang City( n =788), Chengdu City( n =728), Suzhou City( n =793)]. Online questionnaire survey was conducted by questionnair star.@*Results@#About 89.98% of the students used the use of uniform teaching materials, and 63.50% attended the health education classes once a week. The main sources of health knowledge, the use of uniform teaching materials, class schedule and the difference of teachers in different regions and periods were statistically significant ( χ 2=54.98, 40.97, 590.08, 1 061.12;50.70, 47.68 , 356.09, 193.30, P <0.05). The main source of health knowledge was from school/teachers(92.47%). Most health education teachers were classroom teachers(30.03%). Content of health education that students were interested in varied by gender and grade ( χ 2=20.91, 35.90, P <0.05), but not by area ( P >0.05). Demand for health knowledge of students varied by area and grade ( χ 2=177.29, 32.37, P <0.05).@*Conclusion@#The status quo of health education in schools is good. Further attention should be paid to cultivate high quality health education teachers and provide targeted health education activities according to students demand, and ultimately improving health literacy among students.

17.
J Environ Manage ; 300: 113703, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34509818

ABSTRACT

Wetland plants play a major role in the process of wastewater treatment in constructed wetlands (CWs). The inhibitory effect of salt stress on plants may reduce the performance of CWs. In this study, salicylic acid (SA) and/or calcium ion (Ca2+) were used for root pretreatment to alleviate the salt stress in Iris pseudacorus L. The results showed that root pretreatment with SA and/or Ca2+ improved the response of Iris pseudacorus L. to salinity by increasing growth, photosynthetic pigments, Pro content, enzymes activities and K+ content. In addition, SA and/or Ca2+ application in saline conditions decreased the relative conductivity and content of malondialdehyde. RNA-seq analysis showed the expression of hormone signaling genes, potassium ion transporter genes, oxidative stress genes and photosynthesis genes were up-regulated after pretreating with SA and CaCl2. In conclusion, the addition of SA and Ca2+ could improve the saline wastewater treatment efficiency of CWs by enhancing the salt tolerance of Iris pseudacorus L.


Subject(s)
Iris Plant , Wetlands , Calcium Chloride , Iris Plant/genetics , Salicylic Acid/pharmacology , Salt Tolerance/genetics
18.
J Environ Manage ; 299: 113559, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34438309

ABSTRACT

Pesticide and heavy metal contaminants, such as chlorpyrifos (CP) and cadmium (Cd) in farmland drainage had caused the water pollution and attracted extensive concerns around the world. The incorporation of zeolite-based iron-carbon (ZB-IC) into constructed wetlands (CWs) was prepared to simultaneously remove chlorpyrifos (CP) and cadmium (Cd) in farmland drainage, and the interaction of CP degradation and Cd removal was investigated. Laboratory simulated experiments were carried out in this study, and the results presented that the removal efficiencies of CP and Cd by ZB-IC coupled CWs (ZB-IC-CW) were 99.55% and 98.59%, respectively, which were much higher than that of the zeolite-based (ZB) CWs (CP = 92.99%; Cd = 63.54%). The removal mechanism of CP and Cd by ZB-IC substrate was mainly attributed to electron transfer, which occurred from iron corrosion and hydrogen generation process. In addition, CP could act as carbon source to promote denitrification process. Microbial analysis revealed that the relative abundances of CP-resistant bacteria (Firmicutes, Clostridia and Acetobacterium), Cd-resistant bacteria (Bacteroidetes) and denitrifying bacteria (Proteobacteria and Patescibacteria) were dramatically increased due to the addition of ZB-IC. The higher czcA gene and opd gene in ZB-IC-CW demonstrated that the addition of CP played a positive role in Cd removal, while Cd showed slightly affect to CP removal.


Subject(s)
Chlorpyrifos , Wetlands , Cadmium , Carbon , Denitrification , Farms , Iron , Nitrogen , Waste Disposal, Fluid , Wastewater
19.
Environ Pollut ; 289: 117812, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34333269

ABSTRACT

In this study, the biochar (BC) supported Fe-Cu bimetallic stabilized by PVP (Fe-Cu/PVP/BC) were prepared and utilized to enhance the nitrate (NO3-) removal and the selectivity toward nitrogen (N2). Results showed the optimum Fe:Cu:BC ratio and the dosage of the BC (pyrolysis at 700 °C) supported Fe-Cu bimetallic stabilized by polyvinylpyrrolidone (PVP) (Fe-Cu/PVP/BC700) were respectively 1:2:3 and 1 mg L-1 with the selectivity toward N2 of 31 %. This was mainly due to the synergy among Fe0, Cu0 and BC in the Fe-Cu/PVP/BC. The addition of Fe0 could reduce the NO3- through providing electron. The Cu0 and BC improved the selectivity of NO3- to N2 through forming [Cu-NO2-ads] and adjusting redox potential. The addition of Fe-Cu/PVP/BC could supply electrons for denitrification and enhance the relative abundances of Azospira and Thauera related to denitrification to improve NO3- removal. This result was further confirmed by the variations of denitrifying functional genes (narG, nirK, nirS and nosZ). This research provided an effective method to improve NO3- removal during surface water treatment in constructed wetlands (CWs) by adding Fe-Cu/PVP/BC.


Subject(s)
Nitrogen , Wetlands , Charcoal , Denitrification , Nitrates , Povidone , Waste Disposal, Fluid
20.
Chemosphere ; 284: 131391, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34328082

ABSTRACT

Effective removal and recovery of phosphorus (P) from the aquatic environment was of great significance for eutrophication control and P recovery. This study investigated the effects of different environmental conditions on P adsorption by biochar (BC) and the feasibility of applying the P-laden BC as a fertilizer for plant growth. The nano zero-valent iron (nZVI) modified reeds BC prepared at 700 °C (Fe-700-BC) had the maximum P adsorption capacity of 95.2 mg g-1, which was higher than those prepared at 300, 500, and 900 °C. The addition of Fe-700-BC reduced the concentration of total phosphorus (TP) in the overlying water, in which the soluble reactive phosphorus (SRP) almost completely removed, as well as had a certain inhibitory effect on the growth of algae. Simultaneously, Fe-700-BC reduced the contents of different fractions of P (weakly adsorbed inorganic phosphorus (WA-Pi), potential active inorganic phosphorus (PA-Pi), and Fe/Al-bound inorganic phosphorus (Fe/Al-Pi)) by adsorbing the soluble P released from the sediments, especially in the case of disturbance. Fe-700-BC had no significant effect on the diversity and richness of the microbial community in the sediment. Moreover, P-laden BC was safe and environmentally friendly for application in the soil and tended to increase stem and root length, fresh and dry weight at low doses (0.5 wt%) in wheat planting experiments. The present work could provide a reference for solving the problems related to eutrophication and P deficiency.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Charcoal , Iron/analysis , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...