Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
BMC Pulm Med ; 24(1): 209, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685004

ABSTRACT

BACKGROUND: The pathogenesis of adult non-cystic fibrosis (CF) bronchiectasis is complex, and the relevant molecular mechanism remains ambiguous. Versican (VCAN) is a key factor in inflammation through interactions with adhesion molecules. This study constructs a stable panoramic map of mRNA, reveals the possible pathogenesis of bronchiectasis, and provides new ideas and methods for bronchiectasis. METHODS: Peripheral blood and tissue gene expression data from patients with bronchiectasis and normal control were selected by bioinformatics analysis. The expression of VCAN in peripheral blood and bronchial tissues of bronchiectasis were obtained by transcriptome sequencing. The protein expression levels of VCAN in serums were verified by the enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of VCAN in co-culture of Pseudomonas aeruginosa and bronchial epithelial cells were verified by real-time quantitative polymerase chain reaction (RT-qPCR). In addition, the biological function of VCAN was detected by the transwell assay. RESULTS: The expression of VCAN was upregulated in the bronchiectasis group by sequencing analysis (P < 0.001). The expression of VCAN in the bronchial epithelial cell line BEAS-2B was increased in P. aeruginosa (P.a), which was co-cultured with BEAS-2B cells (P < 0.05). The concentration of VCAN protein in the serum of patients with bronchiectasis was higher than that in the normal control group (P < 0.05). Transwell experiments showed that exogenous VCAN protein induced the migration of neutrophils (P < 0.0001). CONCLUSIONS: Our findings indicate that VCAN may be involved in the development of bronchiectasis by increasing the migration of neutrophils and play an important role in bronchial pathogenesis.


Subject(s)
Bronchiectasis , Versicans , Humans , Male , Female , Middle Aged , Retrospective Studies , Versicans/genetics , Versicans/metabolism , Adult , Pseudomonas aeruginosa/genetics , Epithelial Cells/metabolism , Aged , Up-Regulation , Coculture Techniques , Bronchi/pathology , Cell Line , RNA, Messenger/metabolism , Case-Control Studies , Clinical Relevance
2.
Heliyon ; 10(6): e27595, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38496840

ABSTRACT

Coagulation-related genes (CRGs) have been demonstrated to be essential for the development of certain tumors; however, little is known about CRGs in lung squamous cell carcinoma (LUSC). In this study, we adopted CRGs to construct a coagulation-related gene prognostic signature (CRGPS) using machine learning algorithms. Using a set of 92 machine learning integrated algorithms, the CRGPS was determined to be the optimal prognostic signature (median C-index = 0.600) for predicting the prognosis of an LUSC patient. The CRGPS was not only superior to traditional clinical parameters (e.g., T stage, age, and gender) and its commutative genes but also outperformed 19 preexisting prognostic signatures for LUSC on predictive accuracy. The CRGPS score was positively correlated with poor prognoses in patients with LUSC (hazard ratio > 1, p < 0.05), indicating its suitability as a prognostic marker for this disease. The CRGPS was observed to be inversely correlated with the degree of infiltration of natural killer cells. For some tumors, patients with lower CRGPS scores are more likely to experience enhanced immunotherapy effects (area under the curve = 0.70), which implies that the CRGPS can potentially predict immunotherapy efficacy. A high CRGPS score is predictive of an LUSC patient being sensitive to several drugs. Collectively, these findings indicate that the CRGPS may be a reliable indicator of the prognoses of patients with LUSC and may be useful for the clinical management of such patients.

3.
Cancer Control ; 31: 10732748241235468, 2024.
Article in English | MEDLINE | ID: mdl-38410859

ABSTRACT

OBJECTIVE: This study sought to explore the clinical value of matrix metalloproteinases 12 (MMP12) in multiple cancers, including lung adenocarcinoma (LUAD). METHODS: Using >10,000 samples, this retrospective study demonstrated the first pan-cancer analysis of MMP12. The expression of MMP12 between cancer groups and their control groups was analyzed using Wilcoxon rank-sum tests. The clinical significance of MMP12 expression in multiple cancers was assessed using receiver operating characteristic curves, Kaplan-Meier curves, and univariate Cox analysis. A further LUAD-related analysis based on 4565 multi-center and in-house samples was performed to verify the findings regarding MMP12 in pan-cancer analysis partly. RESULTS: MMP12 mRNA is highly expressed in 13 cancers compared to their controls, and the MMP12 protein level is elevated in some of these cancers (e.g., colon adenocarcinoma) (P < .05). MMP12 expression makes it feasible to distinguish 21 cancer tissues from normal tissues (AUC = 0.86). A high MMP12 expression is a prognosis risk factor in eight cancers, such as adrenocortical carcinoma (hazard ratio >1, P < .05). The elevated MMP12 expression is also a prognosis protective factor in breast-invasive carcinoma and colon adenocarcinoma (hazard ratio <1, P < .05). Some pan-cancer findings regarding MMP12 are verified in LUAD-MMP12 expression is upregulated in LUAD at both the mRNA and protein levels (P < .05), has the potential to distinguish LUAD with considerable accuracy (AUC = .91), and plays a risk prognosis factor for patients with the disease (P < .05). CONCLUSIONS: MMP12 is highly expressed in most cancers and may serve as a novel biomarker for the prediction and prognosis of numerous cancers.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Breast Neoplasms , Colonic Neoplasms , Lung Neoplasms , Humans , Female , Matrix Metalloproteinase 12/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Prognosis , Retrospective Studies , Adenocarcinoma of Lung/genetics , RNA, Messenger/genetics , Lung Neoplasms/genetics
4.
PeerJ ; 11: e15598, 2023.
Article in English | MEDLINE | ID: mdl-37601247

ABSTRACT

Background: Worldwide, lung squamous cell carcinoma (LUSC) has wreaked havoc on humanity. Matrix metallopeptidase 12 (MMP12) plays an essential role in a variety of cancers. This study aimed to reveal the expression, clinical significance, and potential molecular mechanisms of MMP12 in LUSC. Methods: There were 2,738 messenger RNA (mRNA) samples from several multicenter databases used to detect MMP12 expression in LUSC, and 125 tissue samples were validated by immunohistochemistry (IHC) experiments. Receiver operator characteristic (ROC) curves, Kaplan-Meier curves, and univariate and multivariate Cox regression analyses were used to assess the clinical value of MMP12 in LUSC. The potential molecular mechanisms of MMP12 were explored by gene enrichment analysis and immune correlation analysis. Furthermore, single-cell sequencing was used to determine the distribution of MMP12 in multiple tumor microenvironment cells. Results: MMP12 was significantly overexpressed at the mRNA level (p < 0.05, SMD = 3.13, 95% CI [2.51-3.75]), which was verified at the protein level (p < 0.001) by internal IHC experiments. MMP12 expression could be used to differentiate LUSC samples from normal samples, and overexpression of MMP12 itself implied a worse clinical prognosis and higher levels of immune cell infiltration in LUSC patients. MMP12 was involved in cancer development and progression through two immune-related signaling pathways. The high expression of MMP12 in LUSC might act as an antigen-presenting cell-associated tumor neoantigen and activate the body's immune response. Conclusions: MMP12 expression is upregulated in LUSC and high expression of MMP12 serves as a risk factor for LUSC patients. MMP12 may be involved in cancer development by participating in immune-related signaling pathways and elevating the level of immune cell infiltration.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Lung , Lung Neoplasms/diagnosis , Matrix Metalloproteinase 12/genetics , Prognosis , Tumor Microenvironment/genetics
5.
BMC Pulm Med ; 23(1): 166, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173675

ABSTRACT

BACKGROUND: Centrosomal protein 55 (CEP55) plays a significant role in specific cancers. However, comprehensive research on CEP55 is lacking in pan-cancer. METHODS: In-house and multi-center samples (n = 15,823) were used to analyze CEP55 in 33 cancers. The variance of CEP55 expression levels among tumor and control groups was evaluated by the Wilcoxon rank-sum test and standardized mean difference (SMD). The clinical value of CEP55 in cancers was assessed using receiver operating characteristic (ROC) curves, Cox regression analysis, and Kaplan-Meier curves. The correlations between CEP55 expression and the immune microenvironment were explored using Spearman's correlation coefficient. RESULTS: The data of clustered regularly interspaced short palindromic repeats confirmed that CEP55 was essential for the survival of cancer cells in multiple cancer types. Elevated CEP55 mRNA expression was observed in 20 cancers, including glioblastoma multiforme (p < 0.05). CEP55 mRNA expression made it feasible to distinguish 21 cancer types between cancer specimens and their control samples (AUC = 0.97), indicating the potential of CEP55 for predicting cancer status. Overexpression of CEP55 was correlated with the prognosis of cancer individuals for 18 cancer types, exhibiting its prognostic value. CEP55 expression was relevant to tumor mutation burden, microsatellite instability, neoantigen counts, and the immune microenvironment in various cancers (p < 0.05). The expression level and clinical relevance of CEP55 in cancers were verified in lung squamous cell carcinoma using in-house and multi-center samples (SMD = 4.07; AUC > 0.95; p < 0.05). CONCLUSION: CEP55 may be an immune-related predictive and prognostic marker for multiple cancers, including lung squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell , Humans , Prognosis , Carcinoma, Squamous Cell/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , RNA, Messenger/genetics , Tumor Microenvironment/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
6.
Technol Health Care ; 31(5): 1691-1707, 2023.
Article in English | MEDLINE | ID: mdl-36970920

ABSTRACT

BACKGROUND: At present, studies on MircoRNA-22-3p (miR-22-3p) in lung adenocarcinoma use a single method, lack multi-center validation and multi-method validation, and there is no big data concept to predict and validate target genes. OBJECTIVE: To investigate the expression, potential targets and clinicopathological significance of miR-22-3p in lung adenocarcinoma (LUAD) tissues. METHODS: LUAD formalin-fixed paraffin-embedded (FFPE) tumors and adjacent normal lung tissues were collected for real-time quantitative polymerase chain reaction (RT-qPCR). Collect miR-22-3p in LUAD and non-cancer lung tissue from high-throughput datasets, standardized mean difference (SMD) and area under the curve (AUC) of the comprehensive receiver operating curve (summary receiver operating characteristic cure, sROC curve) were calculated. Cell function experiments on A549 cells transfected with LV-hsa-miR-22-3p. Target genes were predicted by the miRwalk2.0 website and the resulting target genes were subjected to Gene Ontology (GO) pathway enrichment analysis and constructed to protein-protein interaction network. Finally, the protein expression level of the key gene TP53 was validated by searching The Human Protein Atlas (THPA) database to incorporate TP53 immunohistochemical results in LUAD. RESULTS: RT-qPCR result from 41 pairs of LUAD and adjacent lung tissues showed that miR-22-3p was downregulated in LUAD (AUC = 0.6597, p= 0.0128). Globally, a total of 838 LUADs and 494 non-cancerous lung tissues were included, and were finally combined into 14 platforms. Compared with noncancerous tissue, miR-22-3p expression level was significantly reduced in LUAD tissue (SMD =-0.32, AUC = 0.72l); cell function experiments showed that miR-22-3p has inhibitory effects on cell proliferation, migration and invasion, and has promotion effect on apoptosis. Moreover, target genes prediction, GO pathway enrichment analysis and PPI network exhibited TP53 as a key gene of target gene of miR-22-3p; at last, a total of 114 high-throughput datasets were included, including 3897 LUADs and 2993 non-cancerous lung tissues, and were finally combined into 37 platforms. Compared with noncancerous tissue, TP53 expression level was significantly increased in LUAD (SMD = 0.39, p< 0.01) and it was verified by the protein expression data from THPA. CONCLUSION: Overexpression of miR-22-3p may inhibit LUAD cell proliferation, migration and invasion through TP53, and promote cell apoptosis.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Clinical Relevance , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung/pathology , Cell Proliferation/genetics , Tumor Suppressor Protein p53/genetics
7.
Comb Chem High Throughput Screen ; 26(2): 347-361, 2023.
Article in English | MEDLINE | ID: mdl-35593363

ABSTRACT

BACKGROUND: The clinical value of pyroptosis-related genes (PRGs) in lung adenocarcinoma (LUAD) remains obscure. OBJECTIVE: The study attempts to explore PRGs in LUAD, which will enable an understanding of LUAD from the perspective of PRGs. METHODS: Lung adenocarcinoma patients were diagnosed using pathology, and their clinical information was collected from several public databases. A PRGs prognostic signature (PPS) for LUAD patients was established based on a multivariate Cox regression analysis. The differential expression of PRGs was identified using standardized mean differences in 6,958 samples. The area under the curve (AUC) was used to evaluate the predictive effects of the PPS to determine the survival rate of LUAD patients. Decision curve analysis was utilized to assess the clinical significance of the PPS in LUAD. RESULTS: The PPS consists of five PRGs, namely CASP3, CASP9, GSDMB, NLRP1, and TNF. The prognostic effect of the PPS is evident in all the predicted one-, three-, and five-year survival rates (AUCs ≥ 0.58). The PPS represents an independent risk factor for the prognosis of LUAD patients (hazard ratio > 1; 95% confidence interval excluding 1). The PPS risk score can predict the prognosis of LUAD patients more accurately than PRGs of the PPS and multiple clinical parameters, such as age, tumor stage, and clinical stage. The decision curve analysis revealed that the nomogram based on the PPS and clinical parameters might result in better clinical decisions. CONCLUSION: The PPS makes it feasible to distinguish LUAD from non-LUAD. Thus, the underlying significance of the PPS in distinguishing LUAD from non-LUAD is promising.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Prognosis , Pyroptosis/genetics , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Clinical Relevance , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics
8.
Article in English | MEDLINE | ID: mdl-36285159

ABSTRACT

Objective: YuPingFeng Granules (YPFGs) is an herbal formula clinically used in China for more than 100 years to treat pneumonia. Nevertheless, the mechanism of YPFG in pneumonia treatment has not been established. This network pharmacology-based strategy has been performed to elucidate active compounds as well as mechanisms of YPFG in pneumonia treatment. Methods: First, active compounds of YPFG were identified in the traditional Chinese medicine systems pharmacology (TCMSP) database, and then the targets related to the active compounds were obtained from TCMSP and Swiss Target Prediction databases. Next, using DisGeNET, DrugBank, and GeneCards databases, we got therapeutic targets of pneumonia and common targets between pneumonia targets and YPFG. After that, a protein-protein interaction (PPI) network of pneumonia composed of common targets was built to analyze the interactions among these targets, which focused on screening for hub targets by topology. Then, online software and the ClusterProfiler package were utilized for the enrichment analysis of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) data. Finally, the visualization software of Autodock was used for molecular docking among the hub target proteins. Results: 10 hub genes were selected by comparing the GO and KEGG functions of pneumonia targets with those of the common targets of YPFG and pneumonia. By using molecular docking technology, a total of 3 active ingredients have been verified as being able to combine closely with 6 hub targets and contribute to their therapeutic effects. Conclusion: This research explored the multigene pharmacological mechanism of action of YPFG against pneumonia through network pharmacology. The findings present new ideas for studying the mechanism of action of Chinese medicine against pneumonia caused by bacteria.

9.
BMC Pulm Med ; 22(1): 300, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35927660

ABSTRACT

BACKGROUND: Little is known about the relationship between integrin subunit alpha V (ITGAV) and cancers, including small cell lung cancer (SCLC). METHODS: Using large sample size from multiple sources, the clinical roles of ITGAV expression in SCLC were explored using differential expression analysis, receiver operating characteristic curves, Kaplan-Meier curves, etc. RESULTS: Decreased mRNA (SMD = - 1.05) and increased protein levels of ITGAV were detected in SCLC (n = 865). Transcription factors-ZEB2, IK2F1, and EGR2-may regulate ITGAV expression in SCLC, as they had ChIP-Seq (chromatin immunoprecipitation followed by sequencing) peaks upstream of the transcription start site of ITGAV. ITGAV expression made it feasible to distinguish SCLC from non-SCLC (AUC = 0.88, sensitivity = 0.78, specificity = 0.84), and represented a risk role in the prognosis of SCLC (p < 0.05). ITGAV may play a role in cancers by influencing several immunity-related signaling pathways and immune cells. Further, the extensive pan-cancer analysis verified the differential expression of ITGAV and its clinical significance in multiple cancers. CONCLUSION: ITGAV served as a potential marker for prognosis and identification of cancers including SCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Integrins/metabolism , Lung Neoplasms/pathology , Prognosis , Small Cell Lung Carcinoma/genetics
10.
BMC Pulm Med ; 22(1): 246, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35751045

ABSTRACT

BACKGROUND: Cyclin-dependent kinase inhibitor 2C (CDKN2C) was identified to participate in the occurrence and development of multiple cancers; however, its roles in small cell lung carcinoma (SCLC) remain unclear. METHODS: Differential expression analysis of CDKN2C between SCLC and non-SCLC were performed based on 937 samples from multiple centers. The prognosis effects of CDKN2C in patients with SCLC were detected using both Kaplan-Meier curves and log-rank tests. Using receiver-operating characteristic curves, whether CDKN2C expression made it feasible to distinguish SCLC was determined. The potential mechanisms of CDKN2C in SCLC were investigated by gene ontology terms and signaling pathways (Kyoto Encyclopedia of Genes and Genomes). Based on 10,080 samples, a pan-cancer analysis was also performed to determine the roles of CDKN2C in multiple cancers. RESULTS: For the first time, upregulated CDKN2C expression was detected in SCLC samples at both the mRNA and protein levels (p of Wilcoxon rank-sum test < 0.05; standardized mean difference = 2.86 [95% CI 2.20-3.52]). Transcription factor FOXA1 expression may positively regulate CDKN2C expression levels in SCLC. High CDKN2C expression levels were related to the poor prognosis of patients with SCLC (hazard ratio > 1, p < 0.05) and showed pronounced effects for distinguishing SCLC from non-SCLC (sensitivity, specificity, and area under the curve ≥ 0.95). CDKN2C expression may play a role in the development of SCLC by affecting the cell cycle. Furthermore, the first pan-cancer analysis revealed the differential expression of CDKN2C in 16 cancers (breast invasive carcinoma, etc.) and its independent prognostic significance in nine cancers (e.g., adrenocortical carcinoma). CDKN2C expression was related to the immune microenvironment, suggesting its potential usefulness as a prognostic marker in immunotherapy. CONCLUSIONS: This study identified upregulated CDKN2C expression and its clinical significance in SCLC and other multiple cancers, suggesting its potential usefulness as a biomarker in treating and differentiating cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Small Cell Lung Carcinoma , Cyclin-Dependent Kinase Inhibitor p18/genetics , Cyclin-Dependent Kinase Inhibitor p18/metabolism , Humans , Lung Neoplasms/pathology , Prognosis , Small Cell Lung Carcinoma/pathology , Tumor Microenvironment
11.
BMC Med Genomics ; 15(1): 114, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581615

ABSTRACT

BACKGROUND: The roles and clinical values of synaptojanin 2 (SYNJ2) in lung squamous cell carcinoma (LUSC) remain unclear. METHODS: A total of 2824 samples from multi-center were collected to identify the expression of SYNJ2 in LUSC by using Wilcoxon rank-sum test, t-test, and standardized mean difference (SMD), and 194 in-house samples were also included to validate SYNJ2 expression in LUSC. The clinical roles of SYNJ2 were investigated via receiver operating characteristic (ROC) curves, univariate Cox regression analysis, and Kaplan-Meier plots. The underlying mechanisms of SYNJ2 in LUSC were explored by gene set enrichment analysis and immune correlation analysis. Further, a pan-cancer analysis based on 10,238 sapiens was performed to promote the understating of the expression and clinical significance of SYNJ2 in multiple human cancers. RESULTS: SYNJ2 was found to be significantly upregulated in LUSC at both mRNA and protein levels (p < 0.05, SMD = 0.89 [95% CI 0.34-1.45]) via public and in-house samples. Overexpressed SYNJ2 predicted poor prognosis for LUSC patients (hazard ratio = 2.38 [95% CI 1.42-3.98]). The cancer-promoting effect of SYNJ2 may be related to protein digestion and absorption and extracellular matrix-receptor interaction. SYNJ2 expression was closely related to immune cell infiltration, indicating its role in the immune response. Moreover, the distinct expression levels and essential clinical relevance of SYNJ2 in a series of cancers were initially revealed in this study. CONCLUSIONS: This study disclosed the clinical significance of SYNJ2 in LUSC and multiple cancers, demonstrating the novel and potential biomarker for predicting and treating cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Phosphoric Monoester Hydrolases/metabolism , Biomarkers , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Gene Expression Regulation, Neoplastic , Humans , Lung/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Nerve Tissue Proteins , Prognosis
12.
Int J Med Sci ; 19(3): 572-587, 2022.
Article in English | MEDLINE | ID: mdl-35370463

ABSTRACT

BACKGROUND: The role of HOXA family genes in the occurrence and progression of a variety of human cancers has been scatteredly reported. However, there is no systematic study on the differential expression, prognostic significance and potential molecular mechanism of HOXA4 and HOXA5 in LUAD. METHODS: In-house immunohistochemistry (IHC), multi-center microarrays, RT-qPCR and RNA-seq data were incorporated for comprehensively evaluating the expression and prognostic value of HOXA4 and HOXA5 in LUAD. The mechanism of HOXA4 and HOXA5 in the formation and development of LUAD was analyzed from multiple aspects of immune correlations, upstream transcriptional regulation, functional states of single cells and co-expressed gene network. The functional roles of HOXA4 and HOXA5 in LUAD were validated by in vitro experiments. RESULTS: As a result, in 3201 LUAD samples and 2494 non-cancer lung samples, HOXA4 and HOXA5 were significantly downexpressed (P < 0.05). The aberrant expression of HOXA5 was significantly correlated with the clinical progression of LUAD (P < 0.05). HOXA5 showed remarkable prognostic value for LUAD patients (P < 0.05). The expression of HOXA4 and HOXA5 in LUAD were negatively correlated with tumor purity and positively correlated with the infiltration of various immune cells such as B cells, T cells and macrophages. HOXA4 and HOXA5 overexpression had notable inhibitory effect on the proliferation, migration and invasion of LUAD cells. CONCLUSIONS: In conclusion, the identified downexpressed HOXA4 and HOXA5 had significant distinguishing ability for LUAD samples and affected the cellular functions of LUAD cells. The low expression of HOXA5 indicated worse overall survival of LUAD patients. Therefore, the two HOXA family genes especially HOXA5 may serve as potential biomarkers for LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Gene Regulatory Networks , Homeodomain Proteins/genetics , Humans , Immunohistochemistry , Lung Neoplasms/pathology , Prognosis , Transcription Factors/genetics
13.
J Oncol ; 2022: 2010341, 2022.
Article in English | MEDLINE | ID: mdl-35356257

ABSTRACT

The clinical progression of small-cell lung cancer (SCLC) remains pessimistic. The aim of the present study was to promote the understanding of the clinical significance and mechanism of O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) in SCLC. Wilcoxon tests, standardized mean difference (SMD), and Kruskal-Wallis tests were utilized to compare OGT level differences among the experimental and control groups. The univariate Cox regression analysis, Kaplan-Meier curves, and receiver operating characteristic curves were applied to determine OGT's clinical relevance in cancers. The Spearman correlation analysis and enrichment analysis were utilized to explore the underlying mechanisms of OGT in cancers. For the first time in the field, we provide an overview of OGT in 32 cancers using a large number of samples (n = 21,196), determining distinct OGT expression in 25 cancers and its prognosis effects in 12 cancers. Furthermore, using 950 samples from multiple sources, upregulated OGT was found in both mRNA and protein levels in SCLC (SMD = 0.93, 95% CI [0.24, 1.63]). Higher OGT levels represented a more unfavorable disease-free interval for SCLC patients (p < 0.001). The research also identified OGT expression as a potential marker for SCLC prediction (sensitivity = 0.79, specificity = 0.86, and AUC = 0.88). The high expression of OGT in SCLC may result from the positive regulation of two transcription factors-DEK and XRN2. We primarily investigated the underlying mechanisms of OGT in SCLC. Herein, based on the analyses from pan-cancer to SCLC, OGT demonstrated conspicuous clinical significance. OGT may be an underlying biomarker for the treatment and identification of some cancers, including SCLC.

14.
Comput Struct Biotechnol J ; 19: 6229-6239, 2021.
Article in English | MEDLINE | ID: mdl-34840672

ABSTRACT

INTRODUCTION: The risk of infection with COVID-19 is high in lung adenocarcinoma (LUAD) patients, and there is a dearth of studies on the molecular mechanism underlying the high susceptibility of LUAD patients to COVID-19 from the perspective of the global differential expression landscape. OBJECTIVES: To fill the research void on the molecular mechanism underlying the high susceptibility of LUAD patients to COVID-19 from the perspective of the global differential expression landscape. METHODS: Herein, we identified genes, specifically the differentially expressed genes (DEGs), correlated with the susceptibility of LUAD patients to COVID-19. These were obtained by calculating standard mean deviation (SMD) values for 49 SARS-CoV-2-infected LUAD samples and 24 non-affected LUAD samples, as well as 3931 LUAD samples and 3027 non-cancer lung samples from 40 pooled RNA-seq and microarray datasets. Hub susceptibility genes significantly related to COVID-19 were further selected by weighted gene co-expression network analysis. Then, the hub genes were further analyzed via an examination of their clinical significance in multiple datasets, a correlation analysis of the immune cell infiltration level, and their interactions with the interactome sets of the A549 cell line. RESULTS: A total of 257 susceptibility genes were identified, and these genes were associated with RNA splicing, mitochondrial functions, and proteasomes. Ten genes, MEA1, MRPL24, PPIH, EBNA1BP2, MRTO4, RABEPK, TRMT112, PFDN2, PFDN6, and NDUFS3, were confirmed to be the hub susceptibility genes for COVID-19 in LUAD patients, and the hub susceptibility genes were significantly correlated with the infiltration of multiple immune cells. CONCLUSION: In conclusion, the susceptibility genes for COVID-19 in LUAD patients discovered in this study may increase our understanding of the high risk of COVID-19 in LUAD patients.

15.
J Oncol ; 2021: 9910962, 2021.
Article in English | MEDLINE | ID: mdl-34504528

ABSTRACT

The purpose of this study is to investigate the significance of alpha-enolase (ENO1) expression in squamous cell carcinoma of the lung (LUSC), its prognostic value, and prospective molecular mechanism. Using multiplatforms data, including in-house immunohistochemistry, in-house real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), in-house microarray, and public high-throughput data, the expression significance and prognostic role of ENO1 in LUSC tissues were analyzed comprehensively. With the combination of all eligible cases, compared with 941 non-LUSC lung tissues, ENO1 was significantly overexpressed in 1163 cases of LUSC (standardized mean difference (SMD) = 1.23, 95% confidence interval (CI) = 0.76-1.70, P < 0.001). ENO1 also displayed a great ability to differentiate LUSC tissues from non-LUSC lung tissues (AUC = 0.8705) with the comprehensive sensitivity being 0.88 [0.83-0.92], and comprehensive specificity being 0.89 [0.84-0.94]). Moreover, in 1860 cases of LUSC with survival information, patients with higher expression of ENO1 had poorer prognosis (hazard ratio (HR) = 1.20, 95% CI = 1.01-1.43, P = 0.043). ENO1 and its related genes mainly participated in the pathways of cell division and proliferation. In conclusion, the upregulation of ENO1 could affect the carcinogenesis and unfavorable outcome of LUSC.

16.
IET Syst Biol ; 14(5): 252-260, 2020 10.
Article in English | MEDLINE | ID: mdl-33095746

ABSTRACT

This study aimed to investigate the clinicopathological significance and prospective molecular mechanism of RUNX family transcription factor 2 (RUNX2) in lung squamous cell carcinoma (LUSC). The authors used immunohistochemistry (IHC), RNA-seq, and microarray data from multi-platforms to conduct a comprehensive analysis of the clinicopathological significance and molecular mechanism of RUNX2 in the occurrence and development of LUSC. RUNX2 expression was significantly higher in 16 LUSC tissues than in paired non-cancerous tissues detected by IHC (P < 0.05). RNA-seq data from the combination of TCGA and genotype-tissue expression (GTEx) revealed significantly higher expression of RUNX2 in 502 LUSC samples than in 476 non-cancer samples. The expression of RUNX2 protein was also significantly higher in pathologic T3-T4 than in T1-T2 samples (P = 0.031). The pooled standardised mean difference (SMD) for RUNX2 was 0.87 (95% CI, 0.58-1.16), including 29 microarrays from GEO and one from ArrayExpress. The co-expression network of RUNX2 revealed complicated connections between RUNX2 and 45 co-expressed genes, which were significantly clustered in pathways including ECM-receptor interaction, focal adhesion, protein digestion and absorption, human papillomavirus infection and PI3K-Akt signalling pathway. Overexpression of RUNX2 plays an essential role in the clinical progression of LUSC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Core Binding Factor Alpha 1 Subunit/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Humans , Oligonucleotide Array Sequence Analysis
17.
Comput Biol Chem ; 89: 107383, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33032037

ABSTRACT

RUNX family transcription factor 2 (RUNX2) overexpression has been found in various human malignancies. However, the expression levels of RUNX2 mRNA and protein in lung adenocarcinoma (LUAD) were not investigated. This study aims to thoroughly analysis the expression level and potential mechanisms of RUNX2 mRNA in LUAD. We applied in-house immunohistochemistry, high-throughput RNA-sequencing, and gene microarrays to comprehensively investigate the expression level of RUNX2 in LUAD. A pool standard mean difference (SMD) and summary receiver operating characteristic curves (SROC) were calculated to assess the integrated expression value of RUNX2 in LUAD. The hazard ratios (HRs) were integrated to evaluate the overall prognostic effect of RUNX2 on the LUAD patients. The differentially expressed genes (DEGs) of LUAD, the potential target genes of RUNX2, and its co-expressed genes were overlapped to obtain a set of specific genes for GO and KEGG enrichment analyses. RUNX2 overexpression in LUAD was validated using a large number of cases (2 418 LUAD and 1 574 non-tumor lung samples). The pooled SMD was 0.85 (95 % CI: 0.64-1.05) and the area under the curve (AUC) of the SROC was 0.86 (95 %CI: 0.83-0.89). The integrated HR was 1.20 [1.04-1.38], indicating that increased expression of RUNX2 was an independent risk factor for the poor survival of the LUAD patients. RUNX2 and its transcriptionally regulates potential target genes may promote cell proliferation and drug resistance of LUAD by modulating the cell cycle and MAPK signaling pathways. RUNX2 can provide new research directions for targeted drug therapy and drug resistance for LUAD treatment.


Subject(s)
Adenocarcinoma of Lung/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Gene Expression Regulation, Neoplastic/physiology , Lung Neoplasms/metabolism , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/pathology , Cell Proliferation/physiology , Core Binding Factor Alpha 1 Subunit/genetics , Drug Resistance, Neoplasm/physiology , Humans , Immunohistochemistry , Lung/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , MAP Kinase Signaling System/physiology , Prognosis , RNA, Messenger/analysis , Transcription, Genetic/physiology , Up-Regulation
18.
BMC Med Genomics ; 13(1): 3, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31906958

ABSTRACT

BACKGROUND: MiR-182-5p, a cancer-related microRNA (miRNA), modulates tumorigenesis and patient outcomes in various human malignances. This study interroted the clinicopathological significance and molecular mechanisms of miR-182-5p in non-small cell lung cancer (NSCLC). METHODS: The clinical significance of miR-182-5p in NSCLC subtypes was determined based on an analysis of 124 samples (lung adenocarcinomas [LUADs], n = 101; lung squamous cell carcinomas [LUSCs], n = 23) obtained from NSCLC patients and paired noncancer tissues and an analysis of data obtained from public miRNA-seq database, miRNA-chip database, and the scientific literature. The NSCLC samples (n = 124) were analyzed using the real-time quantitative polymerase chain reaction (RT-qPCR). Potential targets of miR-182-5p were identified using lists generated by miRWalk v.2.0, a comprehensive atlas of predicted and validated targets of miRNA-target interactions. Molecular events of miR-182-5p in NSCLC were unveiled based on a functional analysis of candidate targets. The association of miR-182-5p with one of the candidate target genes, homeobox A9 (HOXA9), was validated using in-house RT-qPCR and dual-luciferase reporter assays. RESULTS: The results of the in-house RT-qPCR assays analysis of data obtained from public miRNA-seq databases, miRNA-chip databases, and the scientific literature all supported upregulation of the expression level of miR-182-5p level in NSCLC. Moreover, the in-house RT-qPCR data supported the influence of upregulated miR-182-5p on malignant progression of NSCLC. In total, 774 prospective targets of miR-182-5p were identified. These targets were mainly clustered in pathways associated with biological processes, such as axonogenesis, axonal development, and Ras protein signal transduction, as well as pathways involved in axonal guidance, melanogenesis, and longevity regulation, in multiple species. Correlation analysis of the in-house RT-qPCR data and dual-luciferase reporter assays confirmed that HOXA9 was a direct target of miR-182-5p in NSCLC. CONCLUSIONS: The miR-182-5p expression level was upregulated in NSCLC tissues. MiR-182-5p may exert oncogenic influence on NSCLC through regulating target genes such as HOXA9.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Homeodomain Proteins , Lung Neoplasms , MicroRNAs , Neoplasm Proteins , RNA, Neoplasm , Aged , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Computer Simulation , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Oligonucleotide Array Sequence Analysis , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , RNA-Seq , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
19.
BMC Infect Dis ; 19(1): 1082, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31881849

ABSTRACT

BACKGROUND: To investigate the clinical features of septic pulmonary embolism (SPE) cases and prognostic factors for in-hospital mortality in China. METHODS: A retrospective analysis was conducted of SPE patients hospitalized between January 2007 and June 2018 in the Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University. RESULTS: A total of 98 patients with SPE were identified. All patients had bilateral multiple peripheral nodules on chest computed tomography. The most common pathogen found in blood culture was Staphylococcus aureus (10/33, 30.3%). Transthoracic echocardiography was performed in 39 patients and 20 showed vegetations. Bronchoscopy was performed in 24 patients. Bronchoalveolar lavage fluid (BALF) was obtained from 15 patients (62.5%) and showed predominantly polymorphonuclear cell infiltration (52%, range of 48%~ 63%). Four patients received transbronchial lung biopsy, and histopathological examinations revealed suppurative pneumonia and organizing pneumonia. The in-hospital mortality rate was 19.4%. Age (odds ratio [OR] 1.100; 95% confidence interval [CI] 1.035-1.169), hypotension (OR 7.260; 95% CI 1.126-46.804) and ineffective or delay of empirical antimicrobial therapy (OR 7.341; 95% CI 1.145-47.045) were found to be independent risk factors for in-hospital mortality, whereas drainage treatment was found to be a protective factor (OR 0.33; 95% CI 0.002-0.677). CONCLUSIONS: SPE cases presented with nonspecific clinical manifestations and radiologic features. Blood cultures and bronchoscopy are important measures for early diagnosis and differential diagnosis. There is relationship between primary infection sites and the type of pathogen. Maintaining normal blood pressure and providing timely and appropriate initial antimicrobial therapy for effective control of the infection could improve prognosis.


Subject(s)
Hospital Mortality , Pulmonary Embolism/diagnosis , Pulmonary Embolism/mortality , Shock, Septic/diagnosis , Shock, Septic/mortality , Staphylococcal Infections/diagnosis , Staphylococcal Infections/mortality , Staphylococcus aureus/isolation & purification , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Bronchoalveolar Lavage Fluid/microbiology , Bronchoscopy , China , Critical Care , Echocardiography , Female , Humans , Male , Middle Aged , Pneumonia/diagnostic imaging , Pneumonia/drug therapy , Prognosis , Pulmonary Embolism/drug therapy , Pulmonary Embolism/microbiology , Retrospective Studies , Shock, Septic/drug therapy , Shock, Septic/microbiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Tomography, X-Ray Computed , Treatment Outcome , Young Adult
20.
Open Biol ; 7(9)2017 09.
Article in English | MEDLINE | ID: mdl-28878043

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that causes severe airway infections in humans. These infections are usually difficult to treat and associated with high mortality rates. While colonizing the human airways, P. aeruginosa could accumulate genetic mutations that often lead to its better adaptability to the host environment. Understanding these evolutionary traits may provide important clues for the development of effective therapies to treat P. aeruginosa infections. In this study, 25 P. aeruginosa isolates were longitudinally sampled from the airways of four ventilator-associated pneumonia (VAP) patients. Pacbio and Illumina sequencing were used to analyse the in vivo evolutionary trajectories of these isolates. Our analysis showed that positive selection dominantly shaped P. aeruginosa genomes during VAP infections and led to three convergent evolution events, including loss-of-function mutations of lasR and mpl, and a pyoverdine-deficient phenotype. Specifically, lasR encodes one of the major transcriptional regulators in quorum sensing, whereas mpl encodes an enzyme responsible for recycling cell wall peptidoglycan. We also found that P. aeruginosa isolated at late stages of VAP infections produce less elastase and are less virulent in vivo than their earlier isolated counterparts, suggesting the short-term in vivo evolution of P. aeruginosa leads to attenuated virulence.


Subject(s)
Bacterial Proteins/genetics , Evolution, Molecular , Gene Expression Regulation, Bacterial , Genome, Bacterial , Metalloendopeptidases/genetics , Mutation , Pseudomonas aeruginosa/genetics , Trans-Activators/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Cell Wall/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Humans , Metalloendopeptidases/metabolism , Microbial Sensitivity Tests , Oligopeptides/metabolism , Pancreatic Elastase/genetics , Pancreatic Elastase/metabolism , Phylogeny , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/microbiology , Pneumonia, Ventilator-Associated/pathology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Quorum Sensing , Siderophores/metabolism , Trans-Activators/metabolism , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...