Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 243
Filter
1.
ACS Chem Neurosci ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780450

ABSTRACT

Oxidative stress and neuroinflammation in the aging brain are correlated with the development of neurodegenerative diseases, such as Alzheimer's disease (AD). The blood-brain barrier (BBB) poses a significant challenge to the effective delivery of therapeutics for AD. Prior research has demonstrated that menthol (Men) can augment the permeability of the BBB. Consequently, in the current study, we modified Men on the surface of liposomes to construct menthol-modified quercetin liposomes (Men-Qu-Lips), designed to cross the BBB and enhance quercetin (Qu) concentration in the brain for improved therapeutic efficacy. The experimental findings indicate that Men-Qu-Lips exhibited good encapsulation efficiency and stability, successfully crossed the BBB, improved oxidative stress and neuroinflammation in the brains of aged mice, protected neurons, and enhanced their learning and memory abilities.

2.
Int J Nanomedicine ; 19: 4217-4234, 2024.
Article in English | MEDLINE | ID: mdl-38766660

ABSTRACT

Introduction: Rheumatoid arthritis (RA) is an inflammatory immune-mediated disease that involves synovitis, cartilage destruction, and even joint damage. Traditional agents used for RA therapy remain unsatisfactory because of their low efficiency and obvious adverse effects. Therefore, we here established RA microenvironment-responsive targeted micelles that can respond to the increase in reactive oxygen species (ROS) levels in the joint and improve macrophage-specific targeting of loaded drugs. Methods: We here prepared ROS-responsive folate-modified curcumin micelles (TK-FA-Cur-Ms) in which thioketal (TK) was used as a ROS-responsive linker for modifying polyethylene glycol 5000 (PEG5000) on the micellar surface. When micelles were in the ROS-overexpressing inflammatory microenvironment, the PEG5000 hydration layer was shed, and the targeting ligand FA was exposed, thereby enhancing cellular uptake by macrophages through active targeting. The targeting, ROS sensitivity and anti-inflammatory properties of the micelles were assessed in vitro. Collagen-induced arthritis (CIA) rats model was utilized to investigate the targeting, expression of serum inflammatory factors and histology change of the articular cartilage by micelles in vivo. Results: TK-FA-Cur-Ms had a particle size of 90.07 ± 3.44 nm, which decreased to 78.87 ± 2.41 nm after incubation with H2O2. The micelles exhibited in vitro targeting of RAW264.7 cells and significantly inhibited inflammatory cytokine levels. Pharmacodynamic studies have revealed that TK-FA-Cur-Ms prolonged the drug circulation and exhibited augmented cartilage-protective and anti-inflammatory effects in vivo. Conclusion: The unique ROS-responsive targeted micelles with targeting, ROS sensitivity and anti-inflammatory properties were successfully prepared and may offer an effective therapeutic strategy against RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Curcumin , Folic Acid , Micelles , Reactive Oxygen Species , Animals , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/pharmacokinetics , Curcumin/administration & dosage , Reactive Oxygen Species/metabolism , Rats , Arthritis, Rheumatoid/drug therapy , RAW 264.7 Cells , Mice , Folic Acid/chemistry , Folic Acid/pharmacology , Arthritis, Experimental/drug therapy , Polyethylene Glycols/chemistry , Drug Carriers/chemistry , Folate Receptors, GPI-Anchored/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Particle Size , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Disease Models, Animal
3.
ACS Biomater Sci Eng ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703236

ABSTRACT

The reconstruction of bone defects has been associated with severe challenges worldwide. Nowadays, bone marrow mesenchymal stem cell (BMSC)-based cell sheets have rendered this approach a promising way to facilitate osteogenic regeneration in vivo. Extracellular vesicles (EVs) play an essential role in intercellular communication and execution of various biological functions and are often employed as an ideal natural endogenous nanomedicine for restoring the structure and functions of damaged tissues. The perception of polymorphonuclear leukocytes (neutrophils, PMNs) as indiscriminate killer cells is gradually changing, with new evidence suggesting a role for these cells in tissue repair and regeneration, particularly in the context of bone healing. However, the role of EVs derived from PMNs (PMN-EVs) in bone regeneration remains largely unknown, with limited research being conducted on this aspect. In the current study, we investigated the effects of PMN-EVs on BMSCs and the underlying molecular mechanisms as well as the potential application of PMN-EVs in bone regeneration. Toward this end, BMSC-based cell sheets with integrated PMN-EVs (BS@PMN-EVs) were developed for bone defect regeneration. PMN-EVs were found to significantly enhance the proliferation and osteogenic differentiation of BMSCs in vitro. Furthermore, BS@PMN-EVs were found to significantly accelerate bone regeneration in vivo by enhancing the maturation of the newly formed bone in rat calvarial defects; this is likely attributable to the effect of PMN-EVs in promoting the expression of key osteogenic proteins such as SOD2 and GJA1 in BMSCs. In conclusion, our findings demonstrate the crucial role of PMN-EVs in promoting the osteogenic differentiation of BMSCs during bone regeneration. Furthermore, this study proposes a novel strategy for enhancing bone repair and regeneration via the integration of PMN-EVs with BMSC-based cell sheets.

4.
Int J Biol Macromol ; 267(Pt 1): 131480, 2024 May.
Article in English | MEDLINE | ID: mdl-38599427

ABSTRACT

Bone regeneration remains a major clinical challenge, especially when infection necessitates prolonged antibiotic treatment. This study presents a membrane composed of self-assembled and interpenetrating GL13K, an antimicrobial peptide (AMP) derived from a salivary protein, in a collagen membrane for antimicrobial activity and enhanced bone regeneration. Commercially available collagen membranes were immersed in GL13K solution, and self-assembly was initiated by raising the solution pH to synthesize the multifunctional membrane called COL-GL. COL-GL was composed of interpenetrating large collagen fibers and short GL13K nanofibrils, which increased hydrophobicity, reduced biodegradation from collagenase, and stiffened the matrix compared to control collagen membranes. Incorporation of GL13K led to antimicrobial and anti-fouling activity against early oral surface colonizer Streptococcus gordonii while not affecting fibroblast cytocompatibility or pre-osteoblast osteogenic differentiation. GL13K in solution also reduced macrophage inflammatory cytokine expression and increased pro-healing cytokine expression. Bone formation in a rat calvarial model was accelerated at eight weeks with COL-GL compared to the gold-standard collagen membrane based on microcomputed tomography and histology. Interpenetration of GL13K within collagen sidesteps challenges with antimicrobial coatings on bone regeneration scaffolds while increasing bone regeneration. This strength makes COL-GL a promising approach to reduce post-surgical infections and aid bone regeneration in dental and orthopedic applications. STATEMENT OF SIGNIFICANCE: The COL-GL membrane, incorporating the antimicrobial peptide GL13K within a collagen membrane, signifies a noteworthy breakthrough in bone regeneration strategies for dental and orthopedic applications. By integrating self-assembled GL13K nanofibers into the membrane, this study successfully addresses the challenges associated with antimicrobial coatings, exhibiting improved antimicrobial and anti-fouling activity while preserving compatibility with fibroblasts and pre-osteoblasts. The accelerated bone formation observed in a rat calvarial model emphasizes the potential of this innovative approach to minimize post-surgical infections and enhance bone regeneration outcomes. As a promising alternative for future therapeutic interventions, this material tackles the clinical challenges of extended antibiotic treatments and antibiotic resistance in bone regeneration scenarios.


Subject(s)
Antimicrobial Peptides , Bone Regeneration , Collagen , Membranes, Artificial , Nanofibers , Bone Regeneration/drug effects , Animals , Rats , Nanofibers/chemistry , Collagen/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Osteogenesis/drug effects , Mice , Osteoblasts/drug effects , Streptococcus gordonii/drug effects , Male , Rats, Sprague-Dawley , Fibroblasts/drug effects
5.
Sci Bull (Beijing) ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38493069

ABSTRACT

Stem cells remain in a quiescent state for long-term maintenance and preservation of potency; this process requires fine-tuning regulatory mechanisms. In this study, we identified the epigenetic landscape along the developmental trajectory of skeletal stem cells (SSCs) in skeletogenesis governed by a key regulator, Ptip (also known as Paxip1, Pax interaction with transcription-activation domain protein-1). Our results showed that Ptip is required for maintaining the quiescence and potency of SSCs, and loss of Ptip in type II collagen (Col2)+ progenitors causes abnormal activation and differentiation of SSCs, impaired growth plate morphogenesis, and long bone dysplasia. We also found that Ptip suppressed the glycolysis of SSCs through downregulation of phosphoglycerate kinase 1 (Pgk1) by repressing histone H3K27ac at the promoter region. Notably, inhibition of glycolysis improved the function of SSCs despite Ptip deficiency. To the best of our knowledge, this is the first study to establish an epigenetic framework based on Ptip, which safeguards skeletal stem cell quiescence and potency through metabolic control. This framework is expected to improve SSC-based treatments of bone developmental disorders.

6.
Biochem Biophys Res Commun ; 703: 149647, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38350211

ABSTRACT

The establishment of an osseointegration is crucial for the long-term stability and functionality of implant materials, and early angiogenesis is the key to successful osseointegration. However, the bioinertness of titanium implants affects osseointegration, limiting their clinical application. In this study, inspired by the rapid polarization of macrophages following the phagocytosis of bacteria, we developed bacteroid cerium oxide particles; these particles were composed of CeO2 and had a size similar to that of Bacillus (0.5 µ m). These particles were constructed on the implant surfaces using a hydrothermal method. In vitro experiments demonstrated that the particles effectively decreased the reactive oxygen species (ROS) levels in macrophages (RAW264.7). Furthermore, these particles exerted effects on M1 macrophage polarization, enhanced nitric oxide (NO) secretion to promote vascular regeneration, and facilitated rapid macrophage transition to the M2 phenotype. Subsequently, the particles facilitated human umbilical vein endothelial cell (HUVEC) migration. In vivo studies showed that these particles rapidly stimulated innate immune responses in animal models, leading to enhanced angiogenesis around the implant and improved osseointegration. In summary, the presence of bacteroid cerium oxide particles on the implant surface regulated and accelerated macrophage polarization, thereby enhancing angiogenesis during the immune response and improving peri-implant osseointegration.


Subject(s)
Cerium , Osseointegration , Animals , Humans , Macrophages , Cerium/pharmacology , Immunity, Innate , Neovascularization, Pathologic , Titanium , Osteogenesis , Surface Properties
7.
ACS Omega ; 9(7): 7609-7620, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405546

ABSTRACT

The process of reconstructing an arterial graft is a complex and dynamic process that is subject to the influence of various mechanical factors, including tissue regeneration and blood pressure. The attainment of favorable remodeling outcomes is contingent upon the biocompatibility and biomechanical properties of the arterial graft. A promising strategy involves the emulation of the three-layer structure of the native artery, wherein the inner layer is composed of polycaprolactone (PCL) fibers aligned with blood flow, exhibiting excellent biocompatibility that fosters endothelial cell growth and effectively prevents platelet adhesion. The middle layer, consisting of PCL and polyurethane (PU), offers mechanical support and stability by forming a contractile smooth muscle ring and antiexpansion PU network. The outer layer, composed of PCL fibers with an irregular arrangement, promotes the growth of nerves and pericytes for long-term vascular function. Prioritizing the reconstruction of the inner and outer layers establishes a stable environment for intermediate smooth muscle growth. Our three-layer arterial graft is designed to provide the blood vessel with mechanical support and stability through nondegradable PU, while the incorporation of degradable PCL generates potential spaces for tissue ingrowth, thereby transforming our graft into a living implant.

8.
Int Wound J ; 21(2): e14670, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361225

ABSTRACT

Totally extraperitoneal prosthetic (TEP) is a surgical technique for the treatment of hernia. The purpose of this research is to compare the efficacy of both general anaesthesia and spine anaesthesia for TEP herniorrhaphy. The number of patients who received TEP operations related to the injury from 2008 to 2022 was counted in this study. Patients with TEP operation were classified into general anaesthesia and spine anaesthesia. In this research, 186 related articles were found in the data base, and in the end, 8 were analysed. This study involved 2452 cases of hernia. The data of the operation time, the infection of the wound and the bleeding of the wound were analysed. The analysis of the data was done with RevMan 5.3. Results indicated that there was no significant difference between general anaesthesia and spinal anaesthesia in post-surgical rates for post-operative wound infection (odds ratio [OR], 0.94; 95% confidence interval [CI], 0.49-1.83; p = 0.86); In general anaesthesia, there was no difference in the risk of post-operative wound haematoma when compared with those treated with spinal anaesthesia (OR, 2.96; 95% CI, 0.37-23.69; p = 0.31). In the seven trials, there was no difference in the duration of the surgery between the general anaesthetic and the spinal anaesthesia group (mean difference, -1.44; 95% CI, -4.11 to 1.22; p = 0.29). Data from the available meta-analysis indicate that there is no difference in the risk of post-operative wound infection or wound haematoma when treated with TEP.


Subject(s)
Anesthesia, Spinal , Hernia, Inguinal , Laparoscopy , Humans , Laparoscopy/methods , Hernia, Inguinal/surgery , Herniorrhaphy/methods , Surgical Wound Infection/surgery , Wound Healing , Hematoma/surgery , Treatment Outcome
9.
Drug Dev Ind Pharm ; 50(2): 135-149, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38235554

ABSTRACT

OBJECTIVE: Glioma is the most common and deadly primary malignant tumor in adults. Treatment outcomes are ungratified due to the presence of blood-brain barrier (BBB), glioma stem cells (GSCs) and multidrug resistance (MDR). Docetaxel (DTX) is considered as a potential drug for the treatment of brain tumor, but its effectiveness is limited by its low bioavailability and drug resistance. Tetrandrine (TET) reverses the resistance of tumor cells to chemotherapy drugs. Borneol (BO) modified in micelles has been shown to promote DTX plus TET to cross the BBB, allowing the drug to better act on tumors. Therefore, we constructed BO-modified DTX plus TET micelles to inhibit chemotherapeutic drug resistance. SIGNIFICANCE: Provide a new treatment method for drug-resistant brain gliomas. METHODS: In this study, BO-modified DTX plus TET micelles were prepared by thin film dispersion method, their physicochemical properties were characterized. Its targeting ability was investigated. The therapeutic effect on GSCs was investigated by in vivo and in vitro experiments. RESULTS: The BO-modified DTX plus TET micelles were successfully constructed by thin film dispersion method, and the micelles showed good stability. The results showed that targeting micelles increased bEnd.3 uptake and helped drugs cross the BBB in vitro. And we also found that targeting micelles could inhibit cell proliferation, promote cell apoptosis and inhibit the expression of drug-resistant protein, thus provide a new treatment method for GSCs in vitro and in vivo. CONCLUSIONS: BO-modified DTX plus TET micelles may provide a new treatment method for drug-resistant brain gliomas.


Subject(s)
Antineoplastic Agents , Benzylisoquinolines , Camphanes , Glioma , Humans , Docetaxel , Micelles , Glioma/drug therapy , Glioma/pathology , Brain , Cell Line, Tumor
10.
ACS Chem Neurosci ; 15(3): 593-607, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38214579

ABSTRACT

Objective: Schisandrin B (Sch B) is a bioactive dibenzocyclooctadiene derizative that is prevalent in the fruit of Schisandra chinensis. Numerous studies have demonstrated that Sch B has a neuroprotective action by reducing oxidative stress and effectively preventing inflammation. It follows that Sch B is a potential treatment for Alzheimer's disease (AD). However, the drug's solubility, bioavailability, and lower permeability of the blood-brain barrier (BBB) can all reduce its efficacy during the therapy process. Therefore, this study constructed borneol-modified schisandrin B micelles (Bor-Sch B-Ms), which increase brain targeting by accurately delivering medications to the brain, effectively improving bioavailability. High therapeutic efficacy has been achieved at the pathological site. Methods: Bor-Sch B-Ms were prepared using the thin film dispersion approach in this article. On the one hand, to observe the targeting effect of borneol, we constructed a blood-brain barrier (BBB) model in vitro and studied the ability of micelles to cross the BBB. On the other hand, the distribution of micelle drugs and their related pharmacological effects on neuroinflammation, oxidative stress, and neuronal damage were studied through in vivo administration in mice. Results: In vitro studies have demonstrated that the drug uptake of bEnd.3 cells was increased by the borneol alteration on the surface of the nano micelles, implying that Bor-Sch B-Ms can promote the therapeutic effect of N2a cells. This could result in more medicines entering the BBB. In addition, in vivo studies revealed that the distribution and circulation time of medications in the brain tissue were significantly higher than those in other groups, making it more suitable for the treatment of central nervous system diseases. Conclusion: As a novel nanodrug delivery system, borneol modified schisandrin B micelles have promising research prospects in the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Camphanes , Lignans , Polycyclic Compounds , Mice , Animals , Micelles , Alzheimer Disease/drug therapy , Endothelial Cells , Cyclooctanes
11.
Biomater Sci ; 12(4): 1055-1068, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38226492

ABSTRACT

Zinc alloys have emerged as promising materials for bone regeneration due to their moderate biodegradation rates. However, the blast release of Zn2+ from Zn alloy substrates affects cell behaviors and the subsequent osseointegration quality, retarding their early service performance. To address this issue, extracellular matrix-like hydroxyapatite (HA) nanorods were prepared on Zn-1Ca (ZN) by a combined hydrothermal treatment (HT). HA nanoclusters nucleate on the presetting ZnO layer and grow into nanorods with prolonged HT. HA nanorods protect the ZN substrate from serious corrosion and the corrosion rate is reduced by dozens of times compared with the bare ZN, resulting in a significantly decreased release of Zn2+ ions. The synergistic effect of HA nanorods and appropriate Zn2+ endow ZN implants with obviously improved behaviors of osteoblasts and endothelial cells (e.g. adhesion, proliferation and differentiation) in vitro and new bone formation in vivo. Our work opens up a promising avenue for Zn-based alloys to improve bone regeneration in clinics.


Subject(s)
Coated Materials, Biocompatible , Durapatite , Alloys , Corrosion , Endothelial Cells , Bone Regeneration , Zinc , Materials Testing
12.
Cell ; 187(3): 609-623.e21, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38244548

ABSTRACT

Phosphatidic acid (PA) and reactive oxygen species (ROS) are crucial cellular messengers mediating diverse signaling processes in metazoans and plants. How PA homeostasis is tightly regulated and intertwined with ROS signaling upon immune elicitation remains elusive. We report here that Arabidopsis diacylglycerol kinase 5 (DGK5) regulates plant pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). The pattern recognition receptor (PRR)-associated kinase BIK1 phosphorylates DGK5 at Ser-506, leading to a rapid PA burst and activation of plant immunity, whereas PRR-activated intracellular MPK4 phosphorylates DGK5 at Thr-446, which subsequently suppresses DGK5 activity and PA production, resulting in attenuated plant immunity. PA binds and stabilizes the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), regulating ROS production in plant PTI and ETI, and their potentiation. Our data indicate that distinct phosphorylation of DGK5 by PRR-activated BIK1 and MPK4 balances the homeostasis of cellular PA burst that regulates ROS generation in coordinating two branches of plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Diacylglycerol Kinase , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Diacylglycerol Kinase/metabolism , NADPH Oxidases/metabolism , Phosphatidic Acids/metabolism , Phosphorylation , Plant Immunity , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , Receptors, Pattern Recognition/metabolism
13.
Biosystems ; 235: 105094, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056591

ABSTRACT

Some computational methods have been given for small molecule-RNA binding site identification due to that it plays a significant role in revealing biology function researches. However, it is still challenging to design an accurate model, especially for MCC. We designed a feature extraction technology from two aspects (position specificity and complex network information). Specifically, complex network was employed to express the space topological structure and sequence position information for improving prediction effect. Then, the features fused position specificity and complex network information were input into random forest classifier for model construction. The AUC of 88.22%, 77.92% and 81.46% were obtained on three independent datasets (RB19, CS71, RB78). Compared with the existing method, the best MCC were obtained on three datasets, which were 8.19%, 0.59% and 4.35% higher than the state-of-the-art prediction methods, respectively. The outstanding performances show that our method is a powerful tool to identify RNA binding sites, helping to the design RNA-targeting small molecule drugs. The data and resource codes are available at https://github.com/Kangxiaoneuq/PCN_RNAsite.


Subject(s)
Computational Biology , RNA , RNA/genetics , RNA/metabolism , Binding Sites , Computational Biology/methods
14.
Anal Biochem ; 685: 115401, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37981176

ABSTRACT

Flavin adenine dinucleotide (FAD) binding sites play an increasingly important role as useful targets for inhibiting bacterial infections. To reveal protein topological structural information as a reasonable complement for the identification FAD-binding sites, we designed a novel fusion technology according to sequence and complex network. The specially designed feature vectors were combined and fed into CatBoost for model construction. Moreover, due to the minority class (positive samples) is more significant for biological researches, a random under-sampling technique was applied to solve the imbalance. Compared with the previous methods, our methods achieved the best results for two independent test datasets. Especially, the MCC obtained by FADsite and FADsite_seq were 14.37 %-53.37 % and 21.81 %-60.81 % higher than the results of existing methods on Test6; and they showed improvements ranging from 6.03 % to 21.96 % and 19.77 %-35.70 % on Test4. Meanwhile, statistical tests show that our methods significantly differ from the state-of-the-art methods and the cross-entropy loss shows that our methods have high certainty. The excellent results demonstrated the effectiveness of using sequence and complex network information in identifying FAD-binding sites. It may be complementary to other biological studies. The data and resource codes are available at https://github.com/Kangxiaoneuq/FADsite.


Subject(s)
Flavin-Adenine Dinucleotide , Proteins , Binding Sites , Proteins/chemistry
15.
J Liposome Res ; : 1-37, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38032385

ABSTRACT

As the aging population continues to increase, aging-related inflammation, oxidative stress, and neurodegenerative diseases have become serious global health threats. Resveratrol, a star molecule in natural polyphenols, has been widely reported to have physiological activities such as anti-aging, anti-inflammatory, antioxidant, and neuroprotection. However, its poor water solubility, rapid metabolism, low bioavailability and poor targeting ability, which limits its application. Accordingly, a brain-targeted resveratrol liposome (ANG-RES-LIP) was developed to solve these issues. Experimental results showed that ANG-RES-LIP has a uniform size distribution, good biocompatibility, and a drug encapsulation rate of over 90%. Furthermore, in vitro cell experiments showed that the modification of the targeting ligand ANG significantly increased the capability of RES to cross the BBB and neuronal uptake. Compared with free RES, ANG-RES-LIP demonstrated stronger antioxidant activity and the ability to rescue oxidatively damaged cells from apoptosis. Additionally, ANG-RES-LIP showed the ability to repair damaged neuronal mitochondrial membrane potential. In vivo experiments further demonstrated that ANG-RES-LIP improved cognitive function by reducing oxidative stress and inflammation levels in the brains of aging model mice, repairing damaged neurons and glial cells, and increasing brain-derived neurotrophic factor. In summary, this study not only provides a new method for further development and application of resveratrol but also a promising strategy for preventing and treating age-related neurodegenerative diseases.

16.
Cell Death Dis ; 14(11): 722, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935660

ABSTRACT

Hyperglycemia-induced aberrant glucose metabolism is a causative factor of neurodegeneration and cognitive impairment in diabetes mellitus (DM) patients. The pyruvate dehydrogenase kinase (PDK)-lactic acid axis is regarded as a critical link between metabolic reprogramming and the pathogenic process of neurological disorders. However, its role in diabetic neuropathy remains unclear. Here, we found that PDK1 and phosphorylation of pyruvate dehydrogenase (PDH) were obviously increased in high glucose (HG)-stimulated primary neurons and Neuro-2a cell line. Acetyl-coA, a central metabolic intermediate, might enhance PDK1 expression via histone H3K9 acetylation modification in HG condition. The epigenetic regulation of PDK1 expression provided an available negative feedback pattern in response to HG environment-triggered mitochondrial metabolic overload. However, neuronal PDK1 was decreased in the hippocampus of streptozotocin (STZ)-induced diabetic mice. Our data showed that the expression of PDK1 also depended on the hypoxia-inducible factor-1 (HIF-1) transcriptional activation under the HG condition. However, HIF-1 was significantly reduced in the hippocampus of diabetic mice, which might explain the opposite expression of PDK1 in vivo. Importantly, overexpression of PDK1 reduced HG-induced reactive oxygen species (ROS) generation and neuronal apoptosis. Enhancing PDK1 expression in the hippocampus ameliorated STZ-induced cognitive impairment and neuronal degeneration in mice. Together, our study demonstrated that both acetyl-coA-induced histone acetylation and HIF-1 are necessary to direct PDK1 expression, and enhancing PDK1 may have a protective effect on cognitive recovery in diabetic mice. Schematic representation of the protective effect of PDK1 on hyperglycemia-induced neuronal injury and memory loss. High glucose enhanced the expression of PDK1 in an acetyl-coA-dependent histone acetylation modification to avoid mitochondrial metabolic overload and ROS release. However, the decrease of HIF-1 may impair the upregulation of PDK1 under hyperglycemia condition. Overexpression of PDK1 prevented hyperglycemia-induced hippocampal neuronal injury and memory loss in diabetic mice.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Humans , Mice , Animals , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Histones/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Reactive Oxygen Species/metabolism , Acetyl Coenzyme A/metabolism , Epigenesis, Genetic , Disease Models, Animal , Neurons/metabolism , Memory Disorders , Glucose/toxicity
17.
J Control Release ; 363: 657-669, 2023 11.
Article in English | MEDLINE | ID: mdl-37832724

ABSTRACT

Peri-implantitis induced by infection leads to gingival recession, alveolar resorption and eventual dental implant failure. So, antibiosis and biosealing of abutments as well as osseointegration of roots need to be projected seriously during the whole service lifespan of dental implants. In this work, a multipurpose photothermal therapy strategy based on Si/P/F doped TiO2 matrix is proposed to address the above issues. This TiO2 matrix not only has outstanding photothermal response, but also triggers the release of F ions under near-infrared (NIR) light irradiation. Local hyperthermia assisted with the released F ions reduces adenosine triphosphate (ATP) synthesis of staphylococcus aureus (S. aureus), increases bacterial membrane permeability, and induces abundant of reactive oxygen species, resulting in the oxidation of cellular components and eventual death of bacteria. Furthermore, the synergic action of mild photothermal stimulation and Si/P/F ions of TiO2 matrix up-regulates gingival epithelial cells behavior (e.g., hemidesmosome formation) and osteoblasts response in vitro. In an infected model, this TiO2 matrix obviously eliminates bacteria, reduces inflammatory response, improves epithelial sealing and osseointegration, and reduces alveolar resorption by regulating NIR irradiation.


Subject(s)
Alveolar Bone Loss , Humans , Fluorides , Staphylococcus aureus , Antibiosis , Bone Regeneration , Titanium , Anti-Bacterial Agents/pharmacology
18.
Biomed Opt Express ; 14(10): 5182-5198, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37854568

ABSTRACT

Understanding how cells respond to external stimuli is crucial. However, there are a lack of inspection systems capable of simultaneously stimulating and imaging cells, especially in their natural states. This study presents a novel microfluidic stimulation and observation system equipped with flat-fielding quantitative phase contrast microscopy (FF-QPCM). This system allowed us to track the behavior of organelles in live cells experiencing controlled microfluidic stimulation. Using this innovative imaging platform, we successfully quantified the cellular response to shear stress including directional cellular shrinkage and mitochondrial distribution change in a label-free manner. Additionally, we detected and characterized the cellular response, particularly mitochondrial behavior, under varying fluidic conditions such as temperature and drug induction time. The proposed imaging platform is highly suitable for various microfluidic applications at the organelle level. We advocate that this platform will significantly facilitate life science research in microfluidic environments.

19.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37796098

ABSTRACT

It is of great significance to study the mechanical behavior and permeability properties of hydrate-bearing sediments for a safe, efficient, and sustainable exploitation of hydrate. However, most of the studies conducted so far have focused only on a single stress field or seepage field, which is detached from practical engineering. In this paper, a new integrated experimental system (IES) was proposed, which realizes the coupling study of stress and seepage. The main body of IES is a triaxial subsystem and a seepage subsystem. The triaxial subsystem can realize in situ synthesis and triaxial shear of hydrate-bearing sediments (HBS). Stable seepage can be effectively formed using a constant pressure infusion pump and a back pressure valve. A series of shear-seepage coupling tests were carried out to verify the effectiveness of the IES and explore the stress-seepage coupling characteristics of HBS. The results show that stress has a significant influence on permeability, and its essence is the stress compression on the seepage channel. The stress-strain relationship, volume response, and permeability are related to each other. The permeability will be affected by the coupling of hydrate saturation (pore plugging), effective confining pressure (pore compression), and shear (fracture generation).

20.
iScience ; 26(9): 107455, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37680481

ABSTRACT

Type H vessels couple angiogenesis with osteogenesis, while sympathetic cues regulate vascular and skeletal function. The crosstalk between sympathetic nerves and type H vessels in bone remains unclear. Here, we first identify close spatial connections between sympathetic nerves and type H vessels in bone, particularly in metaphysis. Sympathoexcitation, mimicked by isoproterenol (ISO) injection, reduces type H vessels and bone mass. Conversely, beta-2-adrenergic receptor (ADRB2) deficiency maintains type H vessels and bone mass in the physiological condition. In vitro experiments reveal indirect sympathetic modulation of angiogenesis via paracrine effects of mesenchymal stem cells (MSCs), which alter the transcription of multiple angiogenic genes in endothelial cells (ECs). Furthermore, Notch signaling in ECs underlies sympathoexcitation-regulated type H vessel formation, impacting osteogenesis and bone mass. Finally, propranolol (PRO) inhibits beta-adrenergic activity and protects type H vessels and bone mass against estrogen deficiency. These findings unravel the specialized neurovascular coupling in bone homeostasis and regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...