Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Methods ; 19(1): 101, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770966

ABSTRACT

BACKGROUND: Sugarcane (Saccharum spp.) is the core crop for sugar and bioethanol production over the world. A major problem in sugarcane production is stalk lodging due to weak mechanical strength. Rind penetrometer resistance (RPR) and breaking force are two kinds of regular parameters for mechanical strength characterization. However, due to the lack of efficient methods for determining RPR and breaking force in sugarcane, genetic approaches for improving these traits are generally limited. This study was designed to use near-infrared spectroscopy (NIRS) calibration assay to accurately assess mechanical strength on a high-throughput basis for the first time. RESULTS: Based on well-established laboratory measurements of sugarcane stalk internodes collected in the years 2019 and 2020, considerable variations in RPR and breaking force were observed in the stalk internodes. Following a standard NIRS calibration process, two online models were obtained with a high coefficient of determination (R2) and the ratio of prediction to deviation (RPD) values during calibration, internal cross-validation, and external validation. Remarkably, the equation for RPR exhibited R2 and RPD values as high as 0.997 and 17.70, as well as showing relatively low root mean square error values at 0.44 N mm-2 during global modeling, demonstrating excellent predictive performance. CONCLUSIONS: This study delivered a successful attempt for rapid and precise prediction of rind penetrometer resistance and breaking force in sugarcane stalk by NIRS assay. These established models can be used to improve phenotyping jobs for sugarcane germplasm on a large scale.

2.
Microb Cell Fact ; 21(1): 2, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983520

ABSTRACT

Epidemic diseases and antibiotic resistance are urgent threats to global health, and human is confronted with an unprecedented dilemma to conquer them by expediting development of new natural product related drugs. C-nucleoside antibiotics, a remarkable group of microbial natural products with diverse biological activities, feature a heterocycle base linked with a ribosyl moiety via an unusual C-glycosidic bond, and have played significant roles in healthcare and for plant protection. Elucidating how nature biosynthesizes such a group of antibiotics has provided the basis for engineered biosynthesis as well as targeted genome mining of more C-nucleoside antibiotics towards improved properties. In this review, we mainly summarize the recent advances on the biosynthesis of C-nucleoside antibiotics, and we also tentatively discuss the future developments on rationally accessing C-nucleoside diversities in a more efficient and economical way via synthetic biology strategies.


Subject(s)
Actinobacteria/metabolism , Anti-Bacterial Agents/biosynthesis , Nucleosides/biosynthesis , Synthetic Biology/methods , Actinobacteria/genetics , Biological Products/chemistry , Streptomyces/genetics , Streptomyces/metabolism , Synthetic Biology/trends
3.
iScience ; 22: 430-440, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31816530

ABSTRACT

Minimycin (MIN) is a C-nucleoside antibiotic structurally related to pseudouridine, and indigoidine is a naturally occurring blue pigment produced by diverse bacteria. Although MIN and indigoidine have been known for decades, the logic underlying the divergent biosynthesis of these interesting molecules has been obscure. Here, we report the identification of a minimal 5-gene cluster (min) essential for MIN biosynthesis. We demonstrated that a non-ribosomal peptide synthetase (MinA) governs "the switch" for the divergent biosynthesis of MIN and the cryptic indigoidine. We also demonstrated that MinCN (the N-terminal phosphatase domain of MinC), MinD (uracil phosphoribosyltransferase), and MinT (transporter) function together as the safeguard enzymes, which collaboratively constitute an unusual self-resistance system. Finally, we provided evidence that MinD, utilizing an unprecedented substrate-competition strategy for self-resistance of the producer cell, maintains competition advantage over the active molecule MIN-5'-monophosphate by increasing the UMP pool in vivo. These findings greatly expand our knowledge regarding natural product biosynthesis.

4.
Appl Environ Microbiol ; 84(22)2018 11 15.
Article in English | MEDLINE | ID: mdl-30217843

ABSTRACT

Purine nucleoside antibiotic pairs, concomitantly produced by a single strain, are an important group of microbial natural products. Here, we report a target-directed genome mining approach to elucidate the biosynthesis of the purine nucleoside antibiotic pair aristeromycin (ARM) and coformycin (COF) in Micromonospora haikouensis DSM 45626 (a new producer for ARM and COF) and Streptomyces citricolor NBRC 13005 (a new COF producer). We also provide biochemical data that MacI and MacT function as unusual phosphorylases, catalyzing an irreversible reaction for the tailoring assembly of neplanocin A (NEP-A) and ARM. Moreover, we demonstrate that MacQ is shown to be an adenosine-specific deaminase, likely relieving the potential "excess adenosine" for producing cells. Finally, we report that MacR, an annotated IMP dehydrogenase, is actually an NADPH-dependent GMP reductase, which potentially plays a salvage role for the efficient supply of the precursor pool. Hence, these findings illustrate a fine-tuned pathway for the biosynthesis of ARM and also open the way for the rational search for purine antibiotic pairs.IMPORTANCE ARM and COF are well known for their prominent biological activities and unusual chemical structures; however, the logic of their biosynthesis has long been poorly understood. Actually, the new insights into the ARM and COF pathway will not only enrich the biochemical repertoire for interesting enzymatic reactions but may also lay a solid foundation for the combinatorial biosynthesis of this group of antibiotics via a target-directed genome mining strategy.


Subject(s)
Actinobacteria/metabolism , Adenosine/analogs & derivatives , Anti-Bacterial Agents/metabolism , Coformycin/biosynthesis , Purine Nucleosides/biosynthesis , Actinobacteria/genetics , Adenosine/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , GMP Reductase/genetics , GMP Reductase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...