Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37906729

ABSTRACT

Colloidal AgIn5S8/ZnS quantum dots (QDs) have recently emerged as a promising, efficient, nontoxic, down-shifting material in optoelectronic devices. These QDs exhibit a high photoluminescent quantum yield and offer a range of potential applications, specifically in the field of photovoltaics (PVs) for light management. In this work, we report an eco-friendly method to synthesize AgIn5S8/ZnS QDs and deposit them on commercial silicon solar cells (with an active area of 7.5 cm2), with which the short-circuit current (JSC) enhanced by 1.44% and hence the power conversion efficiency by 2.51%. The enhancements in PV performance are mainly attributable to the improved external quantum efficiency in the ultraviolet region and reduced surface reflectance in the ultraviolet and near-infrared regions. We study the effect of QD concentration on the bifunctions of downshifting and antireflection. The optimal 15 mg/mL QDs blade-coated onto the Si solar cells realize maximum current generation as the reflectance loss in the visible wavelength is compensated by the minimized reflection in the near-infrared region.

2.
ACS Appl Mater Interfaces ; 8(28): 17999-8007, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27340730

ABSTRACT

In this study we design and construct high-efficiency, low-cost, highly stable, hole-conductor-free, solid-state perovskite solar cells, with TiO2 as the electron transport layer (ETL) and carbon as the hole collection layer, in ambient air. First, uniform, pinhole-free TiO2 films of various thicknesses were deposited on fluorine-doped tin oxide (FTO) electrodes by atomic layer deposition (ALD) technology. Based on these TiO2 films, a series of hole-conductor-free perovskite solar cells (PSCs) with carbon as the counter electrode were fabricated in ambient air, and the effect of thickness of TiO2 compact film on the device performance was investigated in detail. It was found that the performance of PSCs depends on the thickness of the compact layer due to the difference in surface roughness, transmittance, charge transport resistance, electron-hole recombination rate, and the charge lifetime. The best-performance devices based on optimized TiO2 compact film (by 2000 cycles ALD) can achieve power conversion efficiencies (PCEs) of as high as 7.82%. Furthermore, they can maintain over 96% of their initial PCE after 651 h (about 1 month) storage in ambient air, thus exhibiting excellent long-term stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...