Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(8): 10931-10941, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38377555

ABSTRACT

The fluid nature of liquid metals combined with their ability to form a solid native oxide skin enables them to be patterned in ways that would be challenging for solid metals. The present work shows a unique way of patterning liquid metals by injecting liquid metals into a mold. The mold contains a nonstick coating that enables the removal of the mold, thereby leaving just the liquid metal on the target substrate. This approach offers the simplicity and structural control of molding but without having the mold become part of the device. Thus, the metal can be encapsulated with very soft polymers that collapse if used as microchannels. The same mold can be used multiple times for high-volume patterning of liquid metal. The injection molding method is rapid and reliably produces structures with complex geometries on both flat and curved surfaces. We demonstrate the method by fabricating an elastomeric Joule heater and an electroadhesive soft gripper to show the potential of the method for soft and stretchable devices.

2.
Chem Rev ; 124(3): 860-888, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38291556

ABSTRACT

Printing of stretchable conductors enables the fabrication and rapid prototyping of stretchable electronic devices. For such applications, there are often specific process and material requirements such as print resolution, maximum strain, and electrical/ionic conductivity. This review highlights common printing methods and compatible inks that produce stretchable conductors. The review compares the capabilities, benefits, and limitations of each approach to help guide the selection of a suitable process and ink for an intended application. We also discuss methods to design and fabricate ink composites with the desired material properties (e.g., electrical conductance, viscosity, printability). This guide should help inform ongoing and future efforts to create soft, stretchable electronic devices for wearables, soft robots, e-skins, and sensors.

3.
Adv Mater ; 35(19): e2205196, 2023 May.
Article in English | MEDLINE | ID: mdl-36044678

ABSTRACT

This review highlights the unique techniques for patterning liquid metals containing gallium (e.g., eutectic gallium indium, EGaIn). These techniques are enabled by two unique attributes of these liquids relative to solid metals: 1) The fluidity of the metal allows it to be injected, sprayed, and generally dispensed. 2) The solid native oxide shell allows the metal to adhere to surfaces and be shaped in ways that would normally be prohibited due to surface tension. The ability to shape liquid metals into non-spherical structures such as wires, antennas, and electrodes can enable fluidic metallic conductors for stretchable electronics, soft robotics, e-skins, and wearables. The key properties of these metals with a focus on methods to pattern liquid metals into soft or stretchable devices are summari.

4.
J Phys Condens Matter ; 51(2)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36215967

ABSTRACT

Delafossite oxide CuAlO2has received great attention as a promising p-type conducting oxide. In this work, high-quality CuAlO2single crystals with a size of several millimeters (mm) are successfully synthesized with areactivecrucible melting method. The crystals are characterized by x-ray diffraction, scanning electron microscopy with energy-dispersive spectroscopy, transport measurement, and magnetic susceptibility measurement. The CuAlO2single crystals show semiconducting behavior with hole carriers, which is consistent with other crystals grown by the conventional slow-cooling method. This growth method we reported here eliminates the process of removing the remaining flux, allowing easy access to the high-quality single crystals. This new approach to growing high-quality delafossite oxide CuAlO2with a few mm size is important for new technologies that demand p-type semiconductor-based device fabrication.

5.
Langmuir ; 37(37): 10914-10923, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34491063

ABSTRACT

This work establishes that static contact angles for gallium-based liquid metals have no utility despite the continued and common use of such angles in the literature. In the presence of oxygen, these metals rapidly form a thin (∼1-3 nm) surface oxide "skin" that adheres to many surfaces and mechanically impedes its flow. This property is problematic for contact angle measurements, which presume the ability of liquids to flow freely to adopt shapes that minimize the interfacial energy. We show here that advancing angles for a metal are always high (>140°)-even on substrates to which it adheres-because the solid native oxide must rupture in tension to advance the contact line. The advancing angle for the metal depends subtly on the substrate surface chemistry but does not vary strongly with hydrophobicity of the substrate. During receding measurements, the metal droplet initially sags as the liquid withdraws from the "sac" formed by the skin and thus the contact area with the substrate initially increases despite its volumetric recession. The oxide pins at the perimeter of the deflated "sac" on all the surfaces are tested, except for certain rough surfaces. With additional withdrawal of the liquid metal, the pinned angle gets smaller until eventually the oxide "sac" collapses. Thus, static contact angles can be manipulated mechanically from 0° to >140° due to hysteresis and are therefore uninformative. We also provide recommendations and best practices for wetting experiments, which may find use in applications that use these alloys such as soft electronics, composites, and microfluidics.

6.
Sci Adv ; 7(32)2021 Aug.
Article in English | MEDLINE | ID: mdl-34362737

ABSTRACT

In stretchable electronics, high-resolution stretchable interfacing at a mild temperature is considered as a great challenge and has not been achieved yet. This study presents a stretchable anisotropic conductive film (S-ACF) that can electrically connect high-resolution stretchable circuit lines to other electrodes whether they are rigid, flexible, or stretchable. The key concepts of this study are (i) high-resolution (~50 µm) but low-contact resistance (0.2 ohm in 0.25 mm2) interfacing by periodically embedding conductive microparticles in thermoplastic film, (ii) low-temperature interfacing through the formation of chemical bonds between the S-ACF and the substrates, (iii) economical interfacing by selectively patterning the S-ACF, and (iv) direct interfacing of chips by using the adhesion of the thermoplastic matrix. We integrate light-emitting diodes on the patterned S-ACF and demonstrate stable light operation at large biaxial areal stretching (εxy = 70%).

7.
Adv Mater ; 33(35): e2102252, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34291519

ABSTRACT

Although wafer-scale single-grain thin films of 2D metal chalcogenides (MCs) have been extensively sought after during the last decade, the grain size of the MC thin films is still limited in the sub-millimeter scale. A general strategy of synthesizing wafer-scale single-grain MC thin films by using commercial wafers (Si, Ge, GaAs) both as metal source and epitaxial collimator is presented. A new mechanism of single-grain thin-film formation, surface diffusion, and epitaxial self-planarization is proposed, where chalcogen elements migrate preferentially along substrate surface and the epitaxial crystal domains flow to form an atomically smooth thin film. Through synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy, the formation of single-grain Si2 Te3 , GeTe, GeSe, and GaTe thin films on (111) Si, Ge, and (100) GaAs is verified. The Si2 Te3 thin film is used to achieve transfer-free fabrication of a high-performance bipolar memristive electrical-switching device.

8.
ACS Appl Mater Interfaces ; 13(23): 26870-26878, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34085807

ABSTRACT

Full advantage of stretchable electronic devices can be taken when utilizing an intrinsically stretchable power source. High-performance stretchable supercapacitors with a simple structure and solid-state operation are good power sources for stretchable electronics. This study suggests a new type of intrinsically stretchable, printable, electroactive ink consisting of 1T-MoS2 and a fluoroelastomer (FE). The active material (1T-MoS2/FE) is made by fluorinating the metallic-phase MoS2 (1T-MoS2) nanosheets with the FE under high-power ultrasonication. The MoS2 in the 1T-MoS2/FE has unconventional crystal structures in which the stable cubic (1T) and distorted 2H structures were mixed. The printed line of the 1T-MoS2/FE on the porous stretchable Au collector electrodes is intrinsically stretchable at more than ε = 50% and has good specific capacitance (28 mF cm-2 at 0.2 mA cm-2) and energy density (3.15 mWh cm-3). The in-plane all-solid-state stretchable supercapacitor is stretchable at ε = 40% and retains its relative capacity (C/Co) by 80%. This printable device platform potentially opens up the in-plane fabrication of stretchable micro-supercapacitor devices for wearable electronic applications.

9.
Adv Mater ; 33(31): e2100299, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34155682

ABSTRACT

Although various stretchable optoelectronic devices have been reported, omni-directionally stretchable transparent circuit lines have been a great challenge. Cracks are engineered and fabricated to be highly conductive patterned metal circuit lines in which gold (Au) grids are embedded. Au is deposited selectively in the cracks to form a grid without any junction between the grid lines. Since each grid line is expandable under stretching, the circuit lines are stretchable in all the directions. This study shows that a thin coating of aluminum on the oxide surface enables precise control of the cracks (crack density, crack depth) in the oxide layer. High optical transparency and high stretchability can be achieved simultaneously by controlling the grid density in the circuit line. Light-emitting diodes are integrated directly on the circuit lines and stable operation is demonstrated under 100% stretching.

10.
Adv Sci (Weinh) ; 8(8): 2004170, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33898192

ABSTRACT

Stretchable electronics has emerged over the past decade and is now expected to bring form factor-free innovation in the next-generation electronic devices. Stretchable devices have evolved with the synthesis of new soft materials and new device architectures that require significant deformability while maintaining the high device performance of the conventional rigid devices. As the mismatch in the mechanical stiffness between materials, layers, and device units is the major challenge for stretchable electronics, interface control in varying scales determines the device characteristics and the level of stretchability. This article reviews the recent advances in interface control for stretchable electronic devices. It summarizes the design principles and covers the representative approaches for solving the technological issues related to interfaces at different scales: i) nano- and microscale interfaces between materials, ii) mesoscale interfaces between layers or microstructures, and iii) macroscale interfaces between unit devices, substrates, or electrical connections. The last section discusses the current issues and future challenges of the interfaces for stretchable devices.

11.
Nat Mater ; 20(4): 533-540, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33398123

ABSTRACT

Conductive and stretchable electrodes that can be printed directly on a stretchable substrate have drawn extensive attention for wearable electronics and electronic skins. Printable inks that contain liquid metal are strong candidates for these applications, but the insulating oxide skin that forms around the liquid metal particles limits their conductivity. This study reveals that hydrogen doping introduced by ultrasonication in the presence of aliphatic polymers makes the oxide skin highly conductive and deformable. X-ray photoelectron spectroscopy and atom probe tomography confirmed the hydrogen doping, and first-principles calculations were used to rationalize the obtained conductivity. The printed circuit lines show a metallic conductivity (25,000 S cm-1), excellent electromechanical decoupling at a 500% uniaxial stretching, mechanical resistance to scratches and long-term stability in wide ranges of temperature and humidity. The self-passivation of the printed lines allows the direct printing of three-dimensional circuit lines and double-layer planar coils that are used as stretchable inductive strain sensors.

12.
Adv Mater ; 32(22): e1907477, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32319128

ABSTRACT

Although structural coloring and photoluminescence (PL) have been investigated for radiation-responsive color change, electroluminescence (EL) has not been used for the radiation-responsive system. An electro-photoluminescence (EPL) color change is presented here. The phosphors in the alternating current electroluminescence (ACEL) act simultaneously as electro-luminophores and photo-luminophores. The EPL chromaticity is systematically investigated depending on the ACEL frequency and UV intensity. It is found that the PL variation depending on UV intensity is the mechanism of the EPL color change. It is revealed that EL and PL can be controlled independently in the low electric field so that the EPL chromaticity can be adjusted by a linear combination of the EL color and the PL color. The EPL color-changing device is used as a deformable visual encryption system and a soft skin for a soft robotic rover, imitating the concealment and signaling functions in nature.

13.
ACS Appl Mater Interfaces ; 11(29): 26204-26212, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31259517

ABSTRACT

Stretchable electrode is an essential part of soft electronic devices. Practical stretchable electrodes must meet the following requirements: metallic conductivity and no resistance change in various situations such as repeated large deformation, toxic environment, and large temperature change. This study suggests a simple electrode design that meets all of these requirements simultaneously. The electrode consists of a liquid metal (LM) mesh pattern that is sandwiched between a thermoplastic block copolymer (BCP) film and a BCP/Ag flake composite film with a microfibril network structure on its surface. The electrode has a high conductivity (1.2 × 104 S/cm) and is stretchable up to 600% uniaxial strain (ε). Its resistance remains unchanged during repeated stretching cycles at ε = 300% (ΔR < 0.04 Ω) as well as under simultaneous situation of large deformation (ε = 400%) and large temperature change (20-70 °C). The electrode is anticorrosive in an acidic solution owing to the hydrophobic BCP layer that protects the LM from being etched. This study shows the connection of two separate electrodes and complete healing of scratched electrodes by finger pressing. In addition, it demonstrates the fabrication of superstretchable electroluminescence display as an example of potential uses of the electrode.

14.
ACS Nano ; 13(6): 7175-7184, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31149801

ABSTRACT

With the advent of foldable electronics, it is necessary to develop a technology ensuring foldability when the circuit lines are placed on the topmost substrate rather than in the neutral plane used in the present industry. Considering the potential technological impacts, conversion of the conventional printed circuit boards to foldable ones is most desirable to achieve the topmost circuitry. This study realizes this unconventional conversion concept by coating an ultrathin anisotropic conductive film (UACF) on a printed metal circuit board. This study presents rapid large-area synthesis of hydrogenated amorphous carbon (a-C:H) thin films and their use as the UACF. Since the synthesized a-C:H thin film has electrical transparency, the metal/a-C:H hybrid board reflects the complexity of the underlying metal circuit board. The a-C:H thin film electrically connects the cracked area of the metal line; thus, the hybrid circuit board is foldable without resistance change during repeated folding cycles. The metal/UACF hybrid circuit board can be applied to the fabrication of various foldable electronic devices.

15.
Acc Chem Res ; 52(1): 63-72, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30586291

ABSTRACT

As industrial needs for healthcare sensors, electronic skin, and flexible/stretchable displays increase, interest in stretchable materials is increasing as well. In recent years, the studies on stretchable materials have spread to various pivot components, such as electrodes, circuits, substrates, semiconductors, dielectric layers, membranes, and active nanocomposite films. The block copolymer (BC) elastomers have been playing considerable role in the development of stretchable materials. Since BCs are soft elastomers based on physical cross-links, they show differences in physical properties from normal elastomers formed with chemical cross-linking. BC elastomers does not require additional chemical cross-linking procedure, so they can be easily processed after dissolved in various solvents. Their viscoelasticity and thermoplasticity enable the BCs to become moldable and sticky. Although their unique physical properties may serve as disadvantages in some cases, they have been actively applied to create various stretchable electronic materials and their uses are expected to be enlarged more than ever. In this Account, we summarize recent successful applications of BCs for the stretchable electronic devices and discuss the possibility of further uses and the challenges to be addressed for practical uses. Studies on BC-based stretchable materials have focused initially on the fabrication process of stretchable conductors; mixing conductive fillers physically with BCs, infiltrating BCs in a conductive filler layer, and converting metal precursors into metal nanoparticles inside BCs. When conductive fillers with high aspect ratios, such as nanowires or nanosheets are used, the fillers can be infiltrated by the BCs after deposited. Since the contacts between the fillers are maintained during the infiltration process, even thin composite films possess high conductivity and stretchability. The metal precursor solution printing is suggested as a promising approach because it is compatible with traditional printing techniques without clogging the nozzles and allows high filler loading efficiency. When using a BC as a substrate, it is advisable to use a BC/PDMS double layer because of viscoelastic and thermoplastic properties of BCs. If BC/PDMS double layer is used with much thicker PDMS layer instead of viscoelastic BC alone, the double layer substrate can show a perfect elastomeric behavior, and the advantages of the BC substrate are preserved. Additionally, the use of conventional manufacturing techniques is important for commercialization of the stretchable devices. BC substrates having preformed microfibril network on their surfaces facilitate the fabrication of high-resolution circuitry by directly depositing metals through a mask on the substrate. Recent successes of fabricating stretchable organic transistors were obtained based on in situ phase separation of polymer semiconductors to form nanofibril bundles on the surface of a BC substrate. They have led to the achievement of high resolution transistor array printed in large area. BCs are expected to expand their applicability, including stretchable batteries, since they make it feasible to fabricate various hybrid nanocomposites, pore size-controlled membranes, and microstructured surfaces. However, it is necessary to secure long-term stability under heat, solvent, and UV; in addition, there is a need for the synthesis of functional BCs for use in stretchable implanted biomedical devices.

16.
Ann Rehabil Med ; 42(1): 137-144, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29560334

ABSTRACT

OBJECTIVE: To evaluate femoral anteversion angle (FAA) change in children with intoeing gait depending on age, gender, and initial FAA using three-dimensional computed tomography (3D-CT). METHODS: The 3D-CT data acquired between 2006 and 2016 were retrospectively reviewed. Children 4 to 10 years of age with symptomatic intoeing gait with follow-up interval of at least 1 year without active treatment were enrolled. Subjects were divided into three groups based on age: group 1 (≥4 and <6 years), group 2 (≥6 and <8 years), and group 3 (≥8 and <10 years). Initial and follow-up FAAs were measured using 3D-CT. Mean changes in FAAs were calculated and compared. RESULTS: A total of 200 lower limbs of 100 children (48 males and 52 females, mean age of 6.1±1.6 years) were included. The mean follow-up period was 18.0±5.4 months. Average initial and follow-up FAA in children with intoeing gait was 31.1°±7.8° and 28.9°±8.2°, respectively. The initial FAA of group 1 was largest (33.5°±7.7°). Follow-up FAA of group 1 was significantly reduced to 28.7°±9.2° (p=0.000). FAA changes in groups 1, 2, and 3 were -6.5°±5.8°, -6.4°±5.1°, and -5.3°±4.0°, respectively. These changes of FAA were not significantly (p=0.355) different among the three age groups. However, FAA changes were higher (p=0.012) in females than those in males. In addition, FAA changes showed difference depending on initial FAA. When initial FAA was smaller than 30°, mean FAA change was -5.6°±4.9°. When initial FAA was more than 30°, mean FAA change was -6.8°±5.4° (p=0.019). CONCLUSION: FAA initial in children with intoeing gait was the greatest in age group 1 (4-6 years). This group also showed significant FAA decrease at follow-up. FAA changes were greater when the child was a female, younger, and had greater initial FAA.

17.
ACS Appl Mater Interfaces ; 9(50): 44096-44105, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29181972

ABSTRACT

We investigated, for the first time, the conditions where a thermoplastic conductive composite can exhibit completely reversible stretchability at high elongational strains (ε = 1.8). We studied a composite of Au nanosheets and a polystyrene-block-polybutadiene-block-polystyrene block copolymer as an example. The composite had an outstandingly low sheet resistance (0.45 Ω/sq). We found that when a thin thermoplastic composite film is placed on a relatively thicker chemically cross-linked elastomer film, it can follow the reversible elastic behavior of the bottom elastomer. Such elasticity comes from the restoration of the block copolymer microstructure. The strong adhesion of the thermoplastic polymer to the metallic fillers is advantageous in the fabrication of mechanically robust, highly conductive, stretchable electrodes. The chemical stability of the Au composite was used to fabricate high luminescence, stretchable electrochemiluminescence displays with a conventional top-bottom electrode setup and with a horizontal electrode setup.

18.
Nanoscale ; 9(41): 16079-16085, 2017 Oct 26.
Article in English | MEDLINE | ID: mdl-29034928

ABSTRACT

Although PEDOT:PSS has already been applied to various electronic devices, commercialized PEDOT:PSS products having high conductivity are expensive, which is a considerable burden on device manufacturing. In this study, we optimize non-ionic surfactants mixed in a PEDOT:PSS solution to upgrade a low-grade product of low conductivity to the level of a high-grade product of high conductivity. This study systematically investigates the phase diagram, morphology, conductivity, and mechanical stability of the PEDOT:PSS films according to the hydrophilicity of non-ionic surfactants. This study reveals that the conductivity of the PEDOT:PSS film varies greatly depending on the chemical structure of the surfactant and its weight fraction in the thin film. Under the optimum conditions (chemical structure and weight fraction) of the surfactant, the conductivity of the low value product could be improved to the conductivity level of the high value product. The electrical properties of the films were excellently stable even under the extreme cyclic bending tests at a bending radius of 1.5 mm. The low-grade and high grade products showed the same electrical performance when they were used in the Ag nanowires/PEDOT:PSS hybrid transparent electrodes. The results are expected to be applied immediately not only in the laboratory but also in various industrial fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...