Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLoS One ; 15(1): e0228207, 2020.
Article in English | MEDLINE | ID: mdl-32004348

ABSTRACT

BACKGROUND: Primaquine is an approved radical cure treatment for Plasmodium vivax malaria but treatment can result in life-threatening hemolysis if given to a glucose-6-phosphate dehydrogenase deficient (G6PDd) patient. There is a need for reliable point-of-care G6PD diagnostic tests. OBJECTIVES: To evaluate the performance of the CareStart™ rapid diagnostic test (RDT) in the hands of healthcare workers (HCWs) and village malaria workers (VMWs) in field settings, and to better understand user perceptions about the risks and benefits of PQ treatment guided by RDT results. METHODS: This study enrolled 105 HCWs and VMWs, herein referred to as trainees, who tested 1,543 healthy adult male volunteers from 84 villages in Cambodia. The trainees were instructed on G6PD screening, primaquine case management, and completed pre and post-training questionnaires. Each trainee tested up to 16 volunteers in the field under observation by the study staff. RESULTS: Out of 1,542 evaluable G6PD volunteers, 251 (16.28%) had quantitative enzymatic activity less than 30% of an adjusted male median (8.30 U/g Hb). There was no significant difference in test sensitivity in detecting G6PDd between trainees (97.21%), expert study staff in the field (98.01%), and in a laboratory setting (95.62%) (p = 0.229); however, test specificity was different for trainees (96.62%), expert study staff in the field (98.14%), and experts in the laboratory (98.99%) (p < 0.001). Negative predictive values were not statistically different for trainees, expert staff, and laboratory testing: 99.44%, 99.61%, and 99.15%, respectively. Knowledge scores increased significantly post-training, with 98.7% willing to prescribe primaquine for P.vivax malaria, an improvement from 40.6% pre-training (p < 0.001). CONCLUSION: This study demonstrated ability of medical staff with different background to accurately use CareStart™ RDT to identify G6PDd in male patients, which may enable safer prescribing of primaquine; however, pharmacovigilance is required to address possible G6PDd misclassifications.


Subject(s)
Diagnostic Tests, Routine , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Primaquine/adverse effects , Residence Characteristics , Adult , Cambodia , Female , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase Deficiency/metabolism , Humans , Malaria, Vivax/drug therapy , Male , Point-of-Care Systems , Primaquine/therapeutic use , Risk Assessment , Young Adult
2.
Open Forum Infect Dis ; 6(9): ofz314, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31660398

ABSTRACT

BACKGROUND: Recent artemisinin-combination therapy failures in Cambodia prompted a search for alternatives. Atovaquone-proguanil (AP), a safe, effective treatment for multidrug-resistant Plasmodium falciparum (P.f.), previously demonstrated additive effects in combination with artesunate (AS). METHODS: Patients with P.f. or mixed-species infection (n = 205) in Anlong Veng (AV; n = 157) and Kratie (KT; n = 48), Cambodia, were randomized open-label 1:1 to a fixed-dose 3-day AP regimen +/-3 days of co-administered artesunate (ASAP). Single low-dose primaquine (PQ, 15 mg) was given on day 1 to prevent gametocyte-mediated transmission. RESULTS: Polymerase chain reaction-adjusted adequate clinical and parasitological response at 42 days was 90% for AP (95% confidence interval [CI], 82%-95%) and 92% for ASAP (95% CI, 83%-96%; P = .73). The median parasite clearance time was 72 hours for ASAP in AV vs 56 hours in KT (P < .001) and was no different than AP alone. At 1 week postprimaquine, 7% of the ASAP group carried microscopic gametocytes vs 29% for AP alone (P = .0001). Nearly all P.f. isolates had C580Y K13 propeller artemisinin resistance mutations (AV 99%; KT 88%). Only 1 of 14 treatment failures carried the cytochrome bc1 (Pfcytb) atovaquone resistance mutation, which was not present at baseline. P.f. isolates remained atovaquone sensitive in vitro but cycloguanil resistant, with a triple P.f. dihydrofolate reductase mutation. CONCLUSIONS: Atovaquone-proguanil remained marginally effective in Cambodia (≥90%) with minimal Pfcytb mutations observed. Treatment failures in the presence of ex vivo atovaquone sensitivity and adequate plasma levels may be attributable to cycloguanil and/or artemisinin resistance. Artesunate co-administration provided little additional blood-stage efficacy but reduced post-treatment gametocyte carriage in combination with AP beyond single low-dose primaquine.

3.
Malar J ; 16(1): 392, 2017 09 30.
Article in English | MEDLINE | ID: mdl-28964258

ABSTRACT

BACKGROUND: While intensive Plasmodium falciparum multidrug resistance surveillance continues in Cambodia, relatively little is known about Plasmodium vivax drug resistance in Cambodia or elsewhere. To investigate P. vivax anti-malarial susceptibility in Cambodia, 76 fresh P. vivax isolates collected from Oddar Meanchey (northern Cambodia) in 2013-2015 were assessed for ex vivo drug susceptibility using the microscopy-based schizont maturation test (SMT) and a Plasmodium pan-species lactate dehydrogenase (pLDH) ELISA. P. vivax multidrug resistance gene 1 (pvmdr1) mutations, and copy number were analysed in a subset of isolates. RESULTS: Ex vivo testing was interpretable in 80% of isolates using the pLDH-ELISA, but only 25% with the SMT. Plasmodium vivax drug susceptibility by pLDH-ELISA was directly compared with 58 P. falciparum isolates collected from the same locations in 2013-4, tested by histidine-rich protein-2 ELISA. Median pLDH-ELISA IC50 of P. vivax isolates was significantly lower for dihydroartemisinin (3.4 vs 6.3 nM), artesunate (3.2 vs 5.7 nM), and chloroquine (22.1 vs 103.8 nM) than P. falciparum but higher for mefloquine (92 vs 66 nM). There were not significant differences for lumefantrine or doxycycline. Both P. vivax and P. falciparum had comparable median piperaquine IC50 (106.5 vs 123.8 nM), but some P. falciparum isolates were able to grow in much higher concentrations above the normal standard range used, attaining up to 100-fold greater IC50s than P. vivax. A high percentage of P. vivax isolates had pvmdr1 Y976F (78%) and F1076L (83%) mutations but none had pvmdr1 amplification. CONCLUSION: The findings of high P. vivax IC50 to mefloquine and piperaquine, but not chloroquine, suggest significant drug pressure from drugs used to treat multidrug resistant P. falciparum in Cambodia. Plasmodium vivax isolates are frequently exposed to mefloquine and piperaquine due to mixed infections and the long elimination half-life of these drugs. Difficulty distinguishing infection due to relapsing hypnozoites versus blood-stage recrudescence complicates clinical detection of P. vivax resistance, while well-validated molecular markers of chloroquine resistance remain elusive. The pLDH assay may be a useful adjunctive tool for monitoring for emerging drug resistance, though more thorough validation is needed. Given high grade clinical chloroquine resistance observed recently in neighbouring countries, low chloroquine IC50 values seen here should not be interpreted as susceptibility in the absence of clinical data. Incorporating pLDH monitoring with therapeutic efficacy studies for individuals with P. vivax will help to further validate this field-expedient method.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Enzyme-Linked Immunosorbent Assay/methods , Microscopy/methods , Plasmodium vivax/drug effects , Cambodia , DNA Copy Number Variations , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Mutation , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Schizonts/growth & development
4.
Malar J ; 15(1): 519, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27769299

ABSTRACT

BACKGROUND: The recent dramatic decline in dihydroartemisinin-piperaquine (DHA-PPQ) efficacy in northwestern Cambodia has raised concerns about the rapid spread of piperaquine resistance just as DHA-PPQ is being introduced as first-line therapy in neighbouring countries. METHODS: Ex vivo parasite susceptibilities were tracked to determine the rate of progression of DHA, PPQ and mefloquine (MQ) resistance from sentinel sites on the Thai-Cambodian and Thai-Myanmar borders from 2010 to 2015. Immediate ex vivo (IEV) histidine-rich protein 2 (HRP-2) assays were used on fresh patient Plasmodium falciparum isolates to determine drug susceptibility profiles. RESULTS: IEV HRP-2 assays detected the precipitous emergence of PPQ resistance in Cambodia beginning in 2013 when 40 % of isolates had an IC90 greater than the upper limit of prior years, and this rate doubled to 80 % by 2015. In contrast, Thai-Myanmar isolates from 2013 to 14 remained PPQ-sensitive, while northeastern Thai isolates appeared to have an intermediate resistance profile. The opposite trend was observed for MQ where Cambodian isolates appeared to have a modest increase in overall sensitivity during the same period, with IC50 declining to median levels comparable to those found in Thailand. A significant association between increased PPQ IC50 and IC90 among Cambodian isolates with DHA-PPQ treatment failure was observed. Nearly all Cambodian and Thai isolates were deemed artemisinin resistant with a >1 % survival rate for DHA in the ring-stage assay (RSA), though there was no correlation among isolates to indicate cross-resistance between PPQ and artemisinins. CONCLUSIONS: Clinical DHA-PPQ failures appear to be associated with declines in the long-acting partner drug PPQ, though sensitivity appears to remain largely intact for now in western Thailand. Rapid progression of PPQ resistance associated with DHA-PPQ treatment failures in northern Cambodia limits drugs of choice in this region, and urgently requires alternative therapy. The temporary re-introduction of artesunate AS-MQ is the current response to PPQ resistance in this area, due to inverse MQ and PPQ resistance patterns. This will require careful monitoring for re-emergence of MQ resistance, and possible simultaneous resistance to all three drugs (AS, MQ and PPQ).


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Plasmodium falciparum/drug effects , Quinolines/pharmacology , Antigens, Protozoan/analysis , Artemisinins/pharmacology , Cambodia , Humans , Inhibitory Concentration 50 , Mefloquine/pharmacology , Parasitic Sensitivity Tests , Plasmodium falciparum/isolation & purification , Protozoan Proteins/analysis , Thailand
5.
Antimicrob Agents Chemother ; 59(8): 4631-43, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26014942

ABSTRACT

Cambodia's first-line artemisinin combination therapy, dihydroartemisinin-piperaquine (DHA-PPQ), is no longer sufficiently curative against multidrug-resistant Plasmodium falciparum malaria at some Thai-Cambodian border regions. We report recent (2008 to 2013) drug resistance trends in 753 isolates from northern, western, and southern Cambodia by surveying for ex vivo drug susceptibility and molecular drug resistance markers to guide the selection of an effective alternative to DHA-PPQ. Over the last 3 study years, PPQ susceptibility declined dramatically (geomean 50% inhibitory concentration [IC50] increased from 12.8 to 29.6 nM), while mefloquine (MQ) sensitivity doubled (67.1 to 26 nM) in northern Cambodia. These changes in drug susceptibility were significantly associated with a decreased prevalence of P. falciparum multidrug resistance 1 gene (Pfmdr1) multiple copy isolates and coincided with the timing of replacing artesunate-mefloquine (AS-MQ) with DHA-PPQ as the first-line therapy. Widespread chloroquine resistance was suggested by all isolates being of the P. falciparum chloroquine resistance transporter gene CVIET haplotype. Nearly all isolates collected from the most recent years had P. falciparum kelch13 mutations, indicative of artemisinin resistance. Ex vivo bioassay measurements of antimalarial activity in plasma indicated 20% of patients recently took antimalarials, and their plasma had activity (median of 49.8 nM DHA equivalents) suggestive of substantial in vivo drug pressure. Overall, our findings suggest DHA-PPQ failures are associated with emerging PPQ resistance in a background of artemisinin resistance. The observed connection between drug policy changes and significant reduction in PPQ susceptibility with mitigation of MQ resistance supports reintroduction of AS-MQ, in conjunction with monitoring of the P. falciparum mdr1 copy number, as a stop-gap measure in areas of DHA-PPQ failure.


Subject(s)
Antimalarials/therapeutic use , Drug Resistance/drug effects , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Quinolines/therapeutic use , Adolescent , Adult , Aged , Artemisinins/therapeutic use , Cambodia , Chloroquine/therapeutic use , Female , Humans , Inhibitory Concentration 50 , Malaria, Falciparum/microbiology , Male , Mefloquine/therapeutic use , Membrane Transport Proteins/metabolism , Middle Aged , Multidrug Resistance-Associated Proteins/metabolism , Parasitic Sensitivity Tests/methods , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/metabolism , Young Adult
6.
Lancet Infect Dis ; 15(6): 683-91, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25877962

ABSTRACT

BACKGROUND: Dihydroartemisinin-piperaquine has been adopted as first-line artemisinin combination therapy (ACT) for multidrug-resistant Plasmodium falciparum malaria in Cambodia because of few remaining alternatives. We aimed to assess the efficacy of standard 3 day dihydroartemisinin-piperaquine treatment of uncomplicated P falciparum malaria, with and without the addition of primaquine, focusing on the factors involved in drug resistance. METHODS: In this observational cohort study, we assessed 107 adults aged 18-65 years presenting to Anlong Veng District Hospital, Oddar Meanchey Province, Cambodia, with uncomplicated P falciparum or mixed P falciparum/Plasmodium vivax infection of between 1000 and 200,000 parasites per µL of blood, and participating in a randomised clinical trial in which all had received dihydroartemisinin-piperaquine for 3 days, after which they had been randomly allocated to receive either primaquine or no primaquine. The trial was halted early due to poor dihydroartemisinin-piperaquine efficacy, and we assessed day 42 PCR-corrected therapeutic efficacy (proportion of patients with recurrence at 42 days) and evidence of drug resistance from the initial cohort. We did analyses on both the intention to treat (ITT), modified ITT (withdrawals, losses to follow-up, and those with secondary outcomes [eg, new non-recrudescent malaria infection] were censored on the last day of follow-up), and per-protocol populations of the original trial. The original trial was registered with ClinicalTrials.gov, number NCT01280162. FINDINGS: Between Dec 10, 2012, and Feb 18, 2014, we had enrolled 107 patients in the original trial. Enrolment was voluntarily halted on Feb 16, 2014, before reaching planned enrolment (n=150) because of poor efficacy. We had randomly allocated 50 patients to primaquine and 51 patients to no primaquine groups. PCR-adjusted Kaplan-Meier risk of P falciparum 42 day recrudescence was 54% (95% CI 45-63) in the modified ITT analysis population. We found two kelch13 propeller gene mutations associated with artemisinin resistance--a non-synonymous Cys580Tyr substitution in 70 (65%) of 107 participants, an Arg539Thr substitution in 33 (31%), and a wild-type parasite in four (4%). Unlike Arg539Thr, Cys580Tyr was accompanied by two other mutations associated with extended parasite clearance (MAL10:688956 and MAL13:1718319). This combination triple mutation was associated with a 5·4 times greater risk of treatment failure (hazard ratio 5·4 [95% CI 2·4-12]; p<0·0001) and higher piperaquine 50% inhibitory concentration (triple mutant 34 nM [28-41]; non-triple mutant 24 nM [1-27]; p=0·003) than other infections had. The drug was well tolerated, with gastrointestinal symptoms being the most common complaints. INTERPRETATION: The dramatic decline in efficacy of dihydroartemisinin-piperaquine compared with what was observed in a study at the same location in 2010 was strongly associated with a new triple mutation including the kelch13 Cys580Tyr substitution. 3 days of artemisinin as part of an artemisinin combination therapy regimen might be insufficient. Strict regulation and monitoring of antimalarial use, along with non-pharmacological approaches to malaria resistance containment, must be integral parts of the public health response to rapidly accelerating drug resistance in the region. FUNDING: Armed Forces Health Surveillance Center/Global Emerging Infections Surveillance and Response System, Military Infectious Disease Research Program, National Institute of Allergy and Infectious Diseases, and American Society of Tropical Medicine and Hygiene/Burroughs Wellcome Fund.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Quinolines/therapeutic use , Adolescent , Adult , Aged , Antimalarials/pharmacology , Artemisinins/pharmacology , Cambodia , Cohort Studies , Female , Humans , Male , Middle Aged , Mutation, Missense , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Point Mutation , Protozoan Proteins/genetics , Quinolines/pharmacology , Randomized Controlled Trials as Topic , Treatment Failure , Young Adult
7.
Malar J ; 13: 96, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24629047

ABSTRACT

The mechanism of massive intravascular haemolysis occurring during the treatment of malaria infection resulting in haemoglobinuria, commonly known as blackwater fever (BWF), remains unknown. BWF is most often seen in those with severe malaria treated with amino-alcohol drugs, including quinine, mefloquine and halofantrine. The potential for drugs containing artemisinins, chloroquine or piperaquine to cause oxidant haemolysis is believed to be much lower, particularly during treatment of uncomplicated malaria. Here is an unusual case of BWF, which developed on day 2 of treatment for uncomplicated Plasmodium falciparum infection with dihydroartemisinin-piperaquine (DHA-PIP) with documented evidence of concomitant seropositivity for Chikungunya infection.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Blackwater Fever/chemically induced , Blackwater Fever/diagnosis , Quinolines/therapeutic use , Adult , Antimalarials/adverse effects , Blackwater Fever/pathology , Drug Combinations , Humans , Male , Quinolines/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...