Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4920, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858353

ABSTRACT

The differentiation of the stroma is a hallmark event during postnatal uterine development. However, the spatiotemporal changes that occur during this process and the underlying regulatory mechanisms remain elusive. Here, we comprehensively delineated the dynamic development of the neonatal uterus at single-cell resolution and characterized two distinct stromal subpopulations, inner and outer stroma. Furthermore, single-cell RNA sequencing revealed that uterine ablation of Pr-set7, the sole methyltransferase catalyzing H4K20me1, led to a reduced proportion of the inner stroma due to massive cell death, thus impeding uterine development. By combining RNA sequencing and epigenetic profiling of H4K20me1, we demonstrated that PR-SET7-H4K20me1 either directly repressed the transcription of interferon stimulated genes or indirectly restricted the interferon response via silencing endogenous retroviruses. Declined H4K20me1 level caused viral mimicry responses and ZBP1-mediated apoptosis and necroptosis in stromal cells. Collectively, our study provides insight into the epigenetic machinery governing postnatal uterine stromal development mediated by PR-SET7.


Subject(s)
Epigenesis, Genetic , Histone-Lysine N-Methyltransferase , Stromal Cells , Uterus , Female , Animals , Uterus/metabolism , Stromal Cells/metabolism , Mice , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Interferons/metabolism , Interferons/genetics , Endogenous Retroviruses/genetics , Apoptosis/genetics , Mice, Inbred C57BL , Cell Death/genetics , Necroptosis/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Histones/metabolism , Single-Cell Analysis , Mice, Knockout , Cell Differentiation/genetics
2.
Cell Death Differ ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698061

ABSTRACT

Uterine luminal epithelia (LE), the first layer contacting with the blastocyst, acquire receptivity for normal embryo implantation. Besides the well-accepted transcriptional regulation dominated by ovarian estrogen and progesterone for receptivity establishment, the involvement of epigenetic mechanisms remains elusive. This study systematically profiles the transcriptome and genome-wide H3K27me3 distribution in the LE throughout the preimplantation. Combining genetic and pharmacological approaches targeting the PRC2 core enzyme Ezh1/2, we demonstrate that the defective remodeling of H3K27me3 in the preimplantation stage disrupts the differentiation of LE, and derails uterine receptivity, resulting in implantation failure. Specifically, crucial epithelial genes, Pgr, Gata2, and Sgk1, are transcriptionally silenced through de novo deposition of H3K27me3 for LE transformation, and their sustained expression in the absence of H3K27me3 synergistically confines the nuclear translocation of FOXO1. Further functional studies identify several actin-associated genes, including Arpin, Tmod1, and Pdlim2, as novel direct targets of H3K27me3. Their aberrantly elevated expression impedes the morphological remodeling of LE, a hindrance alleviated by treatment with cytochalasin D which depolymerizes F-actin. Collectively, this study uncovers a previously unappreciated epigenetic regulatory mechanism for the transcriptional silencing of key LE genes via H3K27me3, essential for LE differentiation and thus embryo implantation.

3.
Cell Rep ; 43(6): 114246, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762885

ABSTRACT

The decidua plays a crucial role in providing structural and trophic support to the developing conceptus before placentation. Following embryo attachment, embryonic components intimately interact with the decidual tissue. While evidence indicates the participation of embryo-derived factors in crosstalk with the uterus, the extent of their impact on post-implantation decidual development requires further investigation. Here, we utilize transgenic mouse models to selectively eliminate primary trophoblast giant cells (pTGCs), the embryonic cells that interface with maternal tissue at the forefront. pTGC ablation impairs decidualization and compromises decidual interferon response and lipid metabolism. Mechanistically, pTGCs release factors such as interferon kappa (IFNK) to strengthen the decidual interferon response and lipoprotein lipase (LPL) to enhance lipid accumulation within the decidua, thereby promoting decidualization. This study presents genetic and metabolomic evidence reinforcing the proactive role of pTGC-derived factors in mobilizing maternal resources to strengthen decidualization, facilitating the normal progression of early pregnancy.

4.
J Cell Physiol ; 239(6): e31244, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38529784

ABSTRACT

Maternal histone methyltransferase is critical for epigenetic regulation and development of mammalian embryos by regulating histone and DNA modifications. Here, we reported a novel mechanism by revealing the critical effects of maternal Ezh1/2 deletion on mitochondria in MII oocytes and early embryos in mice. We found that Ezh1/2 knockout in mouse MII oocytes impaired the structure of mitochondria and decreased its number, but membrane potential and respiratory function of mitochondrion were increased. The similar effects of Ezh1/2 deletion have been observed in 2-cell and morula embryos, indicating that the effects of maternal Ezh1/2 deficiency on mitochondrion extend to early embryos. However, the loss of maternal Ezh1/2 resulted in a severe defect of morula: the number, membrane potential, respiratory function, and ATP production of mitochondrion dropped significantly. Content of reactive oxygen species was raised in both MII oocytes and early embryos, suggesting maternal Ezh1/2 knockout induced oxidative stress. In addition, maternal Ezh1/2 ablation interfered the autophagy in morula and blastocyst embryos. Finally, maternal Ezh1/2 deletion led to cell apoptosis in blastocyst embryos in mice. By analyzing the gene expression profile, we revealed that maternal Ezh1/2 knockout affected the expression of mitochondrial related genes in MII oocytes and early embryos. The chromatin immunoprecipitation-polymerase chain reaction assay demonstrated that Ezh1/2 directly regulated the expression of genes Fxyd6, Adpgk, Aurkb, Zfp521, Ehd3, Sgms2, Pygl, Slc1a1, and Chst12 by H3K27me3 modification. In conclusion, our study revealed the critical effect of maternal Ezh1/2 on the structure and function of mitochondria in oocytes and early embryos, and suggested a novel mechanism underlying maternal epigenetic regulation on early embryonic development through the modulation of mitochondrial status.


Subject(s)
Mice, Knockout , Mitochondria , Oocytes , Polycomb Repressive Complex 2 , Animals , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/genetics , Oocytes/metabolism , Female , Mice , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Apoptosis/genetics , Embryonic Development/genetics , Blastocyst/metabolism , Gene Expression Regulation, Developmental , Reactive Oxygen Species/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/deficiency , Oxidative Stress/genetics , Morula/metabolism , Autophagy/genetics , Epigenesis, Genetic , Membrane Potential, Mitochondrial
5.
Autophagy ; 20(1): 58-75, 2024 01.
Article in English | MEDLINE | ID: mdl-37584546

ABSTRACT

ABBREVIATIONS: ACTB: actin beta; AREG: amphiregulin; ATP6V0A4: ATPase, H+ transporting, lysosomal V0 subunit A4; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CLDN1: claudin 1; CTSB: cathepsin B; DEGs: differentially expressed genes; E2: 17ß-estradiol; ESR: estrogen receptor; GATA2: GATA binding protein 2; GLA: galactosidase, alpha; GO: gene ontology; HBEGF: heparin-binding EGF-like growth factor; IGF1R: insulin-like growth factor 1 receptor; Ihh: Indian hedgehog; ISH: in situ hybridization; LAMP1: lysosomal-associated membrane protein 1; LCM: laser capture microdissection; Le: lumenal epithelium; LGMN: legumain; LIF: leukemia inhibitory factor; LIFR: LIF receptor alpha; MSX1: msh homeobox 1; MUC1: mucin 1, transmembrane; P4: progesterone; PBS: phosphate-buffered saline; PCA: principal component analysis; PPT1: palmitoyl-protein thioesterase 1; PGR: progesterone receptor; PSP: pseudopregnancy; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; qPCR: quantitative real-time polymerase chain reaction; SP: pregnancy; TFEB: transcription factor EB.


Subject(s)
Hedgehog Proteins , Proteostasis , Pregnancy , Female , Humans , Hedgehog Proteins/metabolism , Autophagy , Uterus/metabolism , Epithelium/metabolism , Cyclooxygenase 2/metabolism , Blastocyst/metabolism , Lysosomes/metabolism
6.
FEBS J ; 291(1): 142-157, 2024 01.
Article in English | MEDLINE | ID: mdl-37786383

ABSTRACT

Decidualization of endometrial stroma is a key step in embryo implantation and its abnormality often leads to pregnancy failure. Stromal decidualization is a very complex process that is co-regulated by estrogen, progesterone and many local factors. The signaling protein SHP2 encoded by PTPN11 is dynamically expressed in decidualized endometrial stroma and mediates and integrates various signals to govern the decidualization. In the present study, we investigate the mechanism of PTPN11 gene transcription. Estrogen, progesterone and cAMP co-induced decidualization of human endometrial stromal cell in vitro, but only progesterone and cAMP induced SHP2 expression. Using the luciferase reporter, we refined a region from -229 bp to +1 bp in the PTPN11 gene promoter comprising the transcriptional core regions that respond to progesterone and cAMP. Progesterone receptor (PGR) and cAMP-responsive element-binding protein 1 (CREB1) were predicted to be transcription factors in this core region by bioinformatic methods. The direct binding of PGR and CREB1 on the PTPN11 promoter was confirmed by electrophoretic mobility and chromatin immunoprecipitation in vitro. Knockdown of PGR and CREB1 protein significantly inhibited the expression of SHP2 induced by medroxyprogesterone acetate and cAMP. These results demonstrate that transcription factors PGR and CREB1 bind to the PTPN11 promoter to regulate the expression of SHP2 in response to decidual signals. Our results explain the transcriptional expression mechanism of SHP2 during decidualization and promote the understanding of the mechanism of decidualization of stromal cells.


Subject(s)
Progesterone , Receptors, Progesterone , Female , Humans , Pregnancy , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Decidua/metabolism , Endometrium/metabolism , Estrogens , Progesterone/pharmacology , Progesterone/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Stromal Cells/metabolism
7.
Dev Cell ; 58(24): 2992-3008.e7, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38056451

ABSTRACT

The placenta becomes one of the most diversified organs during placental mammal radiation. The main in vitro model for studying mouse trophoblast development is the 2D differentiation model of trophoblast stem cells, which is highly skewed to certain lineages and thus hampers systematic screens. Here, we established culture conditions for the establishment, maintenance, and differentiation of murine trophoblast organoids. Murine trophoblast organoids under the maintenance condition contain stem cell-like populations, whereas differentiated organoids possess various trophoblasts resembling placental ones in vivo. Ablation of Nubpl or Gcm1 in trophoblast organoids recapitulated their deficiency phenotypes in vivo, suggesting that those organoids are valid in vitro models for trophoblast development. Importantly, we performed an efficient CRISPR-Cas9 screening in mouse trophoblast organoids using a focused sgRNA (single guide RNA) library targeting G protein-coupled receptors. Together, our results establish an organoid model to investigate mouse trophoblast development and a practicable approach to performing forward screening in trophoblast lineages.


Subject(s)
CRISPR-Cas Systems , Placenta , Pregnancy , Female , Mice , Animals , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Trophoblasts , Cell Differentiation , Organoids , Mammals
8.
Nat Commun ; 14(1): 7356, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37963860

ABSTRACT

The timely onset of female parturition is a critical determinant for pregnancy success. The highly heterogenous maternal decidua has been increasingly recognized as a vital factor in setting the timing of labor. Despite the cell type specific roles in parturition, the role of the uterine epithelium in the decidua remains poorly understood. This study uncovers the critical role of epithelial SHP2 in parturition initiation via COX1 and COX2 derived PGF2α leveraging epithelial specific Shp2 knockout mice, whose disruption contributes to delayed parturition initiation, dystocia and fetal deaths. Additionally, we also show that there are distinct types of epithelium in the decidua approaching parturition at single cell resolution accompanied with profound epithelium reformation via proliferation. Meanwhile, the epithelium maintains the microenvironment by communicating with stromal cells and macrophages. The epithelial microenvironment is maintained by a close interaction among epithelial, stromal and macrophage cells of uterine stromal cells. In brief, this study provides a previously unappreciated role of the epithelium in parturition preparation and sheds lights on the prevention of preterm birth.


Subject(s)
Biochemical Phenomena , Labor, Obstetric , Premature Birth , Animals , Female , Humans , Infant, Newborn , Mice , Pregnancy , Parturition , Uterus
9.
iScience ; 26(10): 107796, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37720083

ABSTRACT

The underlying mechanisms governing parturition remain largely elusive due to limited knowledge of parturition preparation and initiation. Accumulated evidences indicate that maternal decidua plays a critical role in parturition initiation. To comprehensively decrypt the cell heterogeneity in decidua approaching parturition, we investigate the roles of various cell types in mouse decidua process and reveal previously unappreciated insights in parturition initiation utilizing single-cell RNA sequencing (scRNA-seq). We enumerate the cell types in decidua and identity five different stromal cells populations and one decidualized stromal cells. Furthermore, our study unravels that stromal cells prepare for parturition by regulating local retinol acid (RA) synthesis. RA supplement decreases expression of extracellular matrix-related genes in vitro and accelerates the timing of parturition in vivo. Collectively, the discovery of contribution of stromal cells in parturition expands current knowledge about parturition and opens up avenues for the intervention of preterm birth (PTB).

10.
J Ovarian Res ; 16(1): 176, 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37633943

ABSTRACT

BACKGROUND: Traditional Chinese medicine has been used for a long time to treat a variety of gynecological diseases. Among various traditional Chinese medicine, Dingkun Pill (DK) has been used for the treatment of female gynecological diseases. However, DK therapeutic effect on PCOS and the target tissue for its potential effect need to be explored. This study aims to explore the therapeutic effect of DK for PCOS in mice from three aspects: metabolism, endocrine and fertility, and determine whether the brown adipose tissue is the target organ to alleviate the PCOS phenotype. METHODS: PCOS mouse model was constructed by subcutaneous injection of DHEA. The estrous cycle, ovulation, and pregnancy outcome was examined in mice. The level of hormone including the LH, FSH, estrogen and testosterone in the serum were measured by ELISA. Both the glucose sensitivity and insulin sensitivity were determined in mice with different treatment. The histomorphology and lipid contents in the brown adipose tissue were analyzed. RNA-Seq was conducted for the brown adipose tissue and different expression of critical metabolism marker genes was confirmed by real-time PCR. RESULTS: The data showed that the fertility in PCOS mice with DK treatment was significantly increased, and the metabolic disorder was partially restored. Both the whiten of brown adipose tissue and reduced UCP1 expression induced by DHEA was rescued by the DK. The RNA-Seq data further demonstrated both the DHEA induced downregulation of lipolysis genes and oxidative phosphorylation genes were at least partially rescued by DK in the brown adipose tissue. CONCLUSIONS: DK has therapeutic effect on PCOS in DHEA treated mice and the brown adipose tissue is at least one critical target organ to alleviate the PCOS. This is achieved by not only regulating the lipid mobilization of brown adipose, but also restoring its thermogenic function.


Subject(s)
Polycystic Ovary Syndrome , Female , Animals , Mice , Pregnancy , Humans , Polycystic Ovary Syndrome/drug therapy , Adipose Tissue, Brown , Fertility , Down-Regulation , Dehydroepiandrosterone
11.
Elife ; 122023 07 27.
Article in English | MEDLINE | ID: mdl-37498654

ABSTRACT

Decidualization, denoting the transformation of endometrial stromal cells into specialized decidual cells, is a prerequisite for normal embryo implantation and a successful pregnancy in human. Here, we demonstrated that knockout of Gαq lead to an aberrantly enhanced inflammatory state during decidualization. Furthermore, we showed that deficiency of Gαq resulted in over-activation of nuclear factor (NF)-κB signaling, due to the decreased expression of NFκBIA, which encode the IκB protein and is the negative regulator for NF-κB. Mechanistically, Gαq deficiency decreased the Protein kinase D (PKD, also called PKCµ) phosphorylation levels, leading to attenuated HDAC5 phosphorylation and thus its nuclear export. Aberrantly high level of nuclear HDAC5 retarded histone acetylation to inhibit the induced NFκBIA transcription during decidualization. Consistently, pharmacological activation of the PKD/PKCµ or inhibition of the HDAC5 restored the inflammatory state and proper decidual response. Finally, we disclosed that over-active inflammatory state in Gαq-deficient decidua deferred the blastocyst hatching and adhesion in vitro, and the decidual expression of Gαq was significantly lower in women with recurrent pregnancy loss compared with normal pregnancy. In brief, we showed here that Gαq as a key regulator of the inflammatory cytokine's expression and decidual homeostasis in response to differentiation cues, which is required for successful implantation and early pregnancy.


Subject(s)
Decidua , NF-kappa B , Pregnancy , Female , Humans , NF-kappa B/metabolism , Decidua/metabolism , Active Transport, Cell Nucleus , Protein Kinase C/metabolism , GTP-Binding Proteins/metabolism , Stromal Cells/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism
12.
EBioMedicine ; 88: 104433, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36623453

ABSTRACT

BACKGROUND: Successful embryo implantation requires the attachment of a blastocyst to the receptive endometrial epithelium, which was disturbed in the women with recurrent implantation failure (RIF). Endometrial ß3-integrin was the most important adhesion molecule contributing to endometrial receptivity in both humans and mice. Nur77 has been proven indispensable for fertility in mice, here we explore the role of Nur77 on embryo-epithelial adhesion and potential treatment to embryo implantation failure. METHODS: The expression and location of Mst1 and Nur77 in endometrium from fertile women and RIF patients were examined by IHC, qRT-PCR and Western blotting. In vitro kinase assay following with LC-MS/MS were used to identify the phosphorylation site of Nur77 activated by Mst1. The phosphorylated Nur77 was detected by phos-tag SDS-PAGE assay and specific antibody against phospho-Nur77-Thr366. The effect of embryo-epithelium interaction was determined in the BeWo spheroid or mouse embryo adhesion assay, and delayed implantation mouse model. RNA-seq was used to explore the mechanism by which Nur77 derived peptide promotes endometrial receptivity. FINDINGS: Endometrial Mammalian sterile 20 (STE20)-like kinase 1 (Mst1) expression level was decreased in the women with RIF than that in the fertile control group, while Mst1 activation in the epithelial cells promoted trophoblast-uterine epithelium adhesion. The effect of Nur77 mediated trophoblast-uterine epithelium adhesion was facilitated by active Mst1. Mechanistically, mst1 promotes the transcription activity of Nur77 by phosphorylating Nur77 at threonine 366 (T366), and consequently increased downstream target ß3-integrin expression. Furthermore, a Nur77-derived peptide containing phosphorylated T366 markedly promoted mouse embryo attachment to Ishikawa cells ([4 (2-4)] vs [3 (2-4)]) and increased the embryo implantation rate (4 vs 1.4) in a delayed implantation mouse model by regulating integrin signalling. Finally, it is observed that the endometrial phospho-Nur77 (T366) level is decreased by 80% in the women with RIF. INTERPRETATION: In addition to uncovering a potential regulatory mechanism of Mst1/Nur77/ß3-integrin signal axis involved in the regulation of embryo-epithelium interaction, our finding provides a novel marker of endometrial receptivity and a potential therapeutic agent for embryo implantation failure. FUNDING: National Key Research and Development Program of China (2018YFC1004400), the National Natural Science Foundation of China (82171653, 82271698, 82030040, 81971387 and 30900727), and National Institutes of Health grants (R01HL103869).


Subject(s)
Embryo Implantation , Nuclear Receptor Subfamily 4, Group A, Member 1 , Protein Serine-Threonine Kinases , Animals , Female , Humans , Mice , Chromatography, Liquid , Endometrium , Integrins/metabolism , Mammals/metabolism , Phosphorylation , Tandem Mass Spectrometry , Protein Serine-Threonine Kinases/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
13.
J Reprod Immunol ; 154: 103753, 2022 12.
Article in English | MEDLINE | ID: mdl-36228547

ABSTRACT

The placenta, forming the maternal-fetal interface, is essential for the survival and development of the fetus. It has been shown that the basic helix-loop-helix (bHLH) transcription factor Hand1 plays an important role in trophoblast giant cells (TGCs) differentiation during placental development in mice. However, the underlying molecular mechanism remains elusive. We hereby report that Adgrg1 (GPR56), a G protein coupled receptor, was a new transcriptional target of Hand1. Hand1 activated the expression of Adgrg1 by binding to its promoter region during TGCs differentiation. Double in situ hybridization revealed co-expression of Hand1 and Adgrg1 in Prl2c2+ TGCs located in the junctional zone of the placenta. Knockdown of Adgrg1 not only led to increased Prl2c2 expression, but also the improvement of cell migration and invasion during TGC differentiation. Moreover, the ligand of Adgrg1, Tgm2, was expressed in Prl2c2+ TGCs located in the placental junctional zone and Tgm2 Knockdown increased cell migration and invasion, suggesting Tgm2 is a potential ligand involved in the functions of Adgrg1 during TGC differentiation in the manners of autocrine. Collectively, these results demonstrate that Adgrg1 is a new transcriptional target of Hand1, affecting Prl2c2 expression as well as cell migration and invasion during TGCs differentiation. As a transmembrane receptor, Adgrg1 perhaps could act as a potential therapeutic target for placental-associated diseases caused by abnormal trophoblast migration and invasion, providing new insights for the preventions and therapies of placenta-related diseases.


Subject(s)
Placenta , Trophoblasts , Female , Mice , Pregnancy , Animals , Trophoblasts/metabolism , Placenta/metabolism , Ligands , Cell Differentiation , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
14.
Cell Death Dis ; 13(9): 757, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056002

ABSTRACT

Ciliated and secretory cells are two major cell types that comprise the oviduct epithelia. Accumulating evidences support a role of oviductal multiciliated epithelia for embryo transport, however the mechanisms underlying this specialized cell type differentiation remain elusive. Here, we report that CDC42 depletion in oviduct epithelia hampers the morphogenesis of multiciliated cell, and results in embryo retention, leading to early pregnancy failure. Utilizing the oviduct organoid model, we further observed that CDC42 guides secretory cells transition into multiciliated cells independent of its GTPase activity and the well-known Notch pathway. Further exploration uncovered the AKT as a novel indispensable regulator for multiciliated cells differentiation, whose activity was maintained by CDC42 through interacting with the p110ß. Consistently, re-activating AKT partially incites multiciliated cells differentiation in Cdc42 knockout oviductal organoids. Finally, low levels of CDC42 and phospho-AKT with reduced multiciliated cells in the oviduct are observed in women with ectopic pregnancy. Collectively, we provide previously unappreciated evidence that CDC42-AKT signaling is a critical determinant for morphogenesis of oviduct multiciliated cell, which possesses the clinical application in understanding the pathology of ectopic pregnancy and facilitating the development of prevention strategies.


Subject(s)
Embryo, Mammalian/metabolism , Pregnancy, Ectopic , Proto-Oncogene Proteins c-akt/metabolism , cdc42 GTP-Binding Protein/metabolism , Animals , Fallopian Tubes , Female , Humans , Mice , Organoids , Oviducts/metabolism , Pregnancy , Pregnancy, Ectopic/metabolism , Proto-Oncogene Proteins c-akt/genetics
15.
Commun Biol ; 5(1): 840, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982177

ABSTRACT

Recurrent implantation failure (RIF) is defined as the failed pregnancy after good embryo transfer over 3 cycles during in vitro fertilization (IVF).The human endometrium plays a vital role in providing the site for embryo implantation, with several factors implicated in unsatisfactory endometrial receptivity in RIF. Our present results revealed that women with pregnancy loss or infertility have a higher serum epinephrine level, indicating a potential correlation between psychological stress and pregnancy failure. RNA-sequencing of the tissues collected at the endometrial receptive phase in normal and RIF women showed that stress hormones could affect the functional status of endometrial receptivity. Subsequent analysis revealed that the epinephrine signaling acts as an important regulator of endometrial receptivity through the PI3K-AKT and FOXO1 signaling pathways. We also found that patients with RIF show attenuated expression of the alpha-2C-adrenergic receptor (ADRA2C) and that its down regulation induced by high level epinephrine could inhibit the decidualization. Early pregnant mice treated with stress showed high serum epinephrine levels, defective uterine adrenergic receptor expression, and low pregnancy rates. Altogether, our findings indicate that mental stress during early pregnancy can alter the functional status of endometrial receptivity.


Subject(s)
Embryo Implantation , Phosphatidylinositol 3-Kinases , Animals , Anxiety , Embryo Implantation/physiology , Epinephrine/pharmacology , Female , Humans , Mice , Pregnancy , Receptors, Adrenergic
16.
Proc Natl Acad Sci U S A ; 119(32): e2206000119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914132

ABSTRACT

Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.


Subject(s)
Embryo Implantation , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 14 , Progesterone , Uterus , Animals , Embryo Implantation/physiology , Endometrium/metabolism , Female , Infertility, Female , Mitogen-Activated Protein Kinase 14/metabolism , Phosphorylation , Progesterone/metabolism , Receptors, Progesterone/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Uterus/enzymology , Uterus/metabolism
17.
Front Endocrinol (Lausanne) ; 13: 893854, 2022.
Article in English | MEDLINE | ID: mdl-35677715

ABSTRACT

The X-linked miR-465 cluster is highly expressed in the testis, sperm, newborn ovary, and blastocysts as well as in 8-16 cell embryos. However, the physiological role of the miR-465 cluster is still largely unknown. This study aims to dissect the role of the miR-465 cluster in murine development. Despite abundant expression in the testis, ablation of the miR-465 miRNA cluster using CRISPR-Cas9 did not cause infertility. Instead, a skewed sex ratio biased toward males (60% males) was observed among miR-465 KO mice. Further analyses revealed that the female conceptuses selectively degenerated as early as embryonic day 8.5 (E8.5). Small RNA deep sequencing, qPCR, and in situ hybridization analyses revealed that the miRNAs encoded by the miR-465 cluster were mainly localized to the extraembryonic tissue/developing placenta. RNA-seq analyses identified altered mRNA transcriptome characterized by the dysregulation of numerous critical placental genes, e.g., Alkbh1, in the KO conceptuses at E7.5. Taken together, this study showed that the miR-465 cluster is required for normal female placental development, and ablation of the miR-465 cluster leads to a skewed sex ratio with more males (~60%) due to selective degeneration and resorption of the female conceptuses.


Subject(s)
MicroRNAs , Sex Ratio , Animals , Female , Male , Mice , MicroRNAs/genetics , Placenta/metabolism , Pregnancy , Testis/metabolism , Transcriptome
18.
Elife ; 112022 03 04.
Article in English | MEDLINE | ID: mdl-35244538

ABSTRACT

The establishment of pregnancy in human necessitates appropriate decidualization of stromal cells, which involves steroids regulated periodic transformation of endometrial stromal cells during the menstrual cycle. However, the potential molecular regulatory mechanism underlying the initiation and maintenance of decidualization in humans is yet to be fully elucidated. In this investigation, we document that SOX4 is a key regulator of human endometrial stromal cells decidualization by directly regulating FOXO1 expression as revealed by whole genomic binding of SOX4 assay and RNA sequencing. Besides, our immunoprecipitation and mass spectrometry results unravel that SOX4 modulates progesterone receptor (PGR) stability through repressing E3 ubiquitin ligase HERC4-mediated degradation. More importantly, we provide evidence that dysregulated SOX4-HERC4-PGR axis is a potential cause of defective decidualization and recurrent implantation failure in in-vitro fertilization (IVF) patients. In summary, this study evidences that SOX4 is a new and critical regulator for human endometrial decidualization, and provides insightful information for the pathology of decidualization-related infertility and will pave the way for pregnancy improvement.


Subject(s)
Decidua , Receptors, Progesterone , Decidua/metabolism , Endometrium , Female , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Humans , Pregnancy , Protein Stability , Receptors, Progesterone/metabolism , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Stromal Cells/metabolism
19.
Front Cell Dev Biol ; 10: 844623, 2022.
Article in English | MEDLINE | ID: mdl-35242764

ABSTRACT

Since traditional two-dimensional (2D) cell culture cannot meet the demand of simulating physiological conditions in vivo, three-dimensional (3D) culture systems have been developed. To date, most of these systems have been applied for the culture of gastrointestinal and neural tissue. As for the female reproductive system, the culture of endometrial and oviductal tissues in Matrigel has also been performed, but there are still some problems that remain unsolved. This review highlights recent progress regarding endometrial organoids, focusing on the signal for organoid derivation and maintenance, the coculture of the epithelium and stroma, the drug screening using organoids from cancer patients, and provides a potential guideline for genome editing in endometrial organoids.

20.
Cell Tissue Res ; 388(2): 453-469, 2022 May.
Article in English | MEDLINE | ID: mdl-35146559

ABSTRACT

Human uterine stromal cell undergoes decidualization for pregnancy establishment and maintenance, which involved extensive proliferation and differentiation. Increasing studies have suggested that recurrent spontaneous abortion (RSA) may result from defective endometrial stromal decidualization. However, the critical molecular mechanisms underlying impaired decidualization during RSA are still elusive. By using our recently published single-cell RNA sequencing (scRNA-seq) atlas, we found that MYC-associated factor X (MAX) was significantly downregulated in the stromal cells derived from decidual tissues of women with RSA, followed by verification with immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR). MAX knockdown significantly impairs human endometrial stromal cells (HESCs) proliferation as determined by MTS assay and Ki67 immunostaining, and decidualization determined by F-actin, and decidualization markers. RNA-seq together with chromatin immunoprecipitation sequencing (ChIP-seq) and cleavage under targets and release using nuclease sequencing (CUT&RUN-seq) analysis were applied to explore the molecular mechanisms of MAX in regulation of decidualization, followed by dual-luciferase reporter assay to verify that MAX targets to (odd-skipped related transcription factor 2) OSR2 directly. Reduced expression of OSR2 was also confirmed in decidual tissues in women with RSA by IHC and qRT-PCR. OSR2 knockdown also significantly impairs HESCs decidualization. OSR2-overexpression could at least partly rescue the downregulated insulin-like growth factor binding protein 1 (IGFBP1) expression level in response to MAX knockdown. Collectively, MAX deficiency observed in RSA stromal cells not only attenuates HESCs proliferation but also impairs HESCs decidualization by downregulating OSR2 expression at transcriptional level directly.


Subject(s)
Abortion, Spontaneous , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Decidua , Abortion, Spontaneous/genetics , Abortion, Spontaneous/metabolism , Cell Differentiation , Endometrium/metabolism , Female , Humans , Pregnancy , Stromal Cells , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...