Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Article in Chinese | MEDLINE | ID: mdl-38858111

ABSTRACT

Objective:To describe the road map of the lateral and endoscopic ventral approaches for the pharyngeal segment of the internal carotid artery, propose a sub-segmentation scheme, systematically and comprehensively understand its anatomical details and relationships with the surrounding structures. Methods:Five fresh cadaveric head specimens(10 sides in total) were dissected through lateral and endoscopic ventral approaches to evaluate the anatomical details of the parapharyngeal internal carotid artery and its relationship with the surrounding structures. Results:From the bifurcation of the common carotid artery to the vertical part of the internal carotid artery, alongside the direction of blood flow, the parapharyngeal internal carotid artery passes through four distinct anatomical tissues. Based on this, the parapharyngeal internal carotid artery can be divided into four sub-segments: nerve, muscle, fascia and osseous sub-segments. The boundaries and important adjacent structures of each segment are described in detail. Conclusion:The anatomical road map of the parapharyngeal internal carotid artery and the sub-segmentation scheme serving as a practical guide to navigate modular endoscopic skull base surgery of the parapharyngeal space while reduce the risk of internal carotid artery injury.


Subject(s)
Cadaver , Carotid Artery, Internal , Endoscopy , Parapharyngeal Space , Humans , Carotid Artery, Internal/anatomy & histology , Parapharyngeal Space/anatomy & histology , Skull Base/anatomy & histology
2.
Cancer Res ; 84(8): 1237-1251, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38241700

ABSTRACT

Epigenetic alterations at cis-regulatory elements (CRE) fine-tune transcriptional output. Epigenetic readers interact with CREs and can cooperate with other chromatin regulators to drive oncogene transcription. Here, we found that the YEATS domain-containing histone acetylation reader ENL (eleven-nineteen leukemia) acts as a key regulator of super-enhancers (SE), which are highly active distal CREs, across cancer types. ENL occupied the majority of SEs with substantially higher preference over typical enhancers, and the enrichment of ENL at SEs depended on its ability to bind acetylated histones. Rapid depletion of ENL by auxin-inducible degron tagging severely repressed the transcription of SE-controlled oncogenes, such as MYC, by inducing the decommissioning of their SEs, and restoring ENL protein expression largely reversed these effects. Additionally, ENL was indispensable for the rapid activation of SE-regulated immediate early genes in response to growth factor stimulation. Furthermore, ENL interacted with the histone chaperone FACT complex and was required for the deposition of FACT over CREs, which mediates nucleosome reorganization required for transcription initiation and elongation. Proper control of transcription by ENL and ENL-associated FACT was regulated by the histone reader BRD4. ENL was overexpressed in colorectal cancer and functionally contributed to colorectal cancer growth and metastasis. ENL degradation or inhibition synergized with BET inhibitors that target BRD4 in restraining colorectal cancer progression. These findings establish the essential role of epigenetic reader ENL in governing SE-driven oncogenic transcription and uncover the potential of ENL intervention to increase sensitivity to BET inhibition. SIGNIFICANCE: ENL plays a key role in decoding epigenetic marks at highly active oncogenic super-enhancers and can be targeted in combination with BET inhibition as a promising synergistic strategy for optimizing cancer treatment.


Subject(s)
Colorectal Neoplasms , Histones , Humans , Histones/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/metabolism , Epigenesis, Genetic , Colorectal Neoplasms/genetics , Bromodomain Containing Proteins , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...