Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2400780, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850154

ABSTRACT

Cell encapsulation technology, crucial for advanced biomedical applications, faces challenges in existing microfluidic and electrospray methods. Microfluidic techniques, while precise, can damage vulnerable cells, and conventional electrospray methods often encounter instability and capsule breakage during high-throughput encapsulation. Inspired by the transformation of the working state from unstable dripping to stable jetting triggered by local electric potential, this study introduces a superimposed electric field (SEF)-enhanced electrospray method for cell encapsulation, with improved stability and biocompatibility. Utilizing stiffness theory, the stability of the electrospray, whose stiffness is five times stronger under conical confinement, is quantitatively analyzed. The SEF technique enables rapid, continuous production of ≈300 core-shell capsules per second in an aqueous environment, significantly improving cell encapsulation efficiency. This method demonstrates remarkable potential as exemplified in two key applications: (1) a 92-fold increase in human-derived induced pluripotent stem cells (iPSCs) expansion over 10 d, outperforming traditional 2D cultures in both growth rate and pluripotency maintenance, and (2) the development of liver capsules for steatosis modeling, exhibiting normal function and biomimetic lipid accumulation. The SEF-enhanced electrospray method presents a significant advancement in cell encapsulation technology. It offers a more efficient, stable, and biocompatible approach for clinical transplantation, drug screening, and cell therapy.

2.
Adv Mater ; 36(35): e2405109, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38845131

ABSTRACT

Physically crosslinked microgels (PCMs) offer a biocompatible platform for various biomedical applications. However, current PCM fabrication methods suffer from their complexity and poor controllability, due to their reliance on altering physical conditions to initiate gelation and their dependence on specific materials. To address this issue, a novel PCM fabrication method is devised, which employs water transport-induced liquid-liquid phase separation (LLPS) to trigger the intermolecular interaction-supported sol-gel transition within aqueous emulsion droplets. This method enables the controllable and facile generation of PCMs through a single emulsification step, allowing for the facile production of PCMs with various materials and sizes, as well as controllable structures and mechanical properties. Moreover, this PCM fabrication method holds great promise for diverse biomedical applications. The interior of the PCM not only supports the encapsulation and proliferation of bacteria but also facilitates the encapsulation of eukaryotic cells after transforming the system into an all-aqueous emulsion. Furthermore, through appropriate surface functionalization, the PCMs effectively activate T cells in vitro upon coculturing. This work represents an advancement in PCM fabrication and offers new insights and perspectives for microgel engineering.


Subject(s)
Emulsions , Microgels , Water , Water/chemistry , Microgels/chemistry , Emulsions/chemistry , Phase Transition , Biocompatible Materials/chemistry , T-Lymphocytes/cytology , Animals , Cross-Linking Reagents/chemistry , Phase Separation
3.
Nat Biomed Eng ; 7(11): 1437-1454, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37037967

ABSTRACT

The extracellular matrix of cirrhotic liver tissue is highly crosslinked. Here we show that advanced glycation end-products (AGEs) mediate crosslinking in liver extracellular matrix and that high levels of crosslinking are a hallmark of cirrhosis. We used liquid chromatography-tandem mass spectrometry to quantify the degree of crosslinking of the matrix of decellularized cirrhotic liver samples from patients and from two mouse models of liver fibrosis and show that the structure, biomechanics and degree of AGE-mediated crosslinking of the matrices can be recapitulated in collagen matrix crosslinked by AGEs in vitro. Analyses via cryo-electron microscopy and optical tweezers revealed that crosslinked collagen fibrils form thick bundles with reduced stress relaxation rates; moreover, they resist remodelling by macrophages, leading to reductions in their levels of adhesion-associated proteins, altering HDAC3 expression and the organization of their cytoskeleton, and promoting a type II immune response of macrophages. We also show that rosmarinic acid inhibited AGE-mediated crosslinking and alleviated the progression of fibrosis in mice. Our findings support the development of therapeutics targeting crosslinked extracellular matrix in scarred liver tissue.


Subject(s)
Extracellular Matrix , Maillard Reaction , Humans , Mice , Animals , Cryoelectron Microscopy , Extracellular Matrix/metabolism , Collagen/metabolism , Fibrosis , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Glycation End Products, Advanced/analysis , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/pharmacology
4.
Toxics ; 11(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36851052

ABSTRACT

Bisphenol A (BPA) is one of the most widely produced chemicals in the world used in the production of epoxy resins and polycarbonate plastics. BPA is easily migrated from the outer packaging to the contents. Due to the lipophilic property, BPA is easily accumulated in organisms. Perinatal low-dose BPA exposure alters brain neural development in later generations. In this study, after BPA treatment, the spontaneous movement of zebrafish larvae from the cleavage period to the segmentation period (1-24 hpf) was significantly decreased, with speed decreasing by 18.97% and distance decreasing between 18.4 and 29.7% compared to controls. Transcriptomics analysis showed that 131 genes were significantly differentially expressed in the exposed group during the 1-24 hpf period, among which 39 genes were significantly upregulated and 92 genes were significantly downregulated. The GO enrichment analysis, gene function analysis and real-time quantitative PCR of differentially expressed genes showed that the mRNA level of guanine deaminase (cypin) decreased significantly in the 1-24 hpf period. Moreover, during the 1-24 hpf period, BPA exposure reduced guanine deaminase activity. Therefore, we confirmed that cypin is a key sensitive gene for BPA during this period. Finally, the cypin mRNA microinjection verified that the cypin level of zebrafish larvae was restored, leading to the restoration of the locomotor activity. Taken together, the current results show that the sensitive period of BPA to zebrafish embryos is from the cleavage period to the segmentation period (1-24 hpf), and cypin is a potential target for BPA-induced neurodevelopmental toxicity. This study provides a potential sensitive period and a potential target for the deep understanding of neurodevelopmental toxicity mechanisms caused by BPA.

5.
Biomed Mater ; 16(6)2021 10 19.
Article in English | MEDLINE | ID: mdl-34587604

ABSTRACT

Biophysical properties of extracellular matrix (ECM), such as matrix stiffness, viscoelasticity and matrix fibrous structure, are emerging as important factors that regulate progression of fibrosis and other chronic diseases. The biophysical properties of the ECM can be rapidly and profoundly regulated by crosslinking reactions in enzymatic or non-enzymatic manners, which further alter the cellular responses and drive disease progression. In-depth understandings of crosslinking reactions will be helpful to reveal the underlying mechanisms of fibrosis progression and put forward new therapeutic targets, whereas related reviews are still devoid. Here, we focus on the main crosslinking mechanisms that commonly exist in a plethora of chronic diseases (e.g. fibrosis, cancer, osteoarthritis) and summarize current understandings including the biochemical reaction, the effect on ECM properties, the influence on cellular behaviors, and related studies in disease model establishment. Potential pharmaceutical interventions targeting the crosslinking process and relevant clinical studies are also introduced. Limitations of pharmaceutical development may be due to the lack of systemic investigations related to the influence on crosslinking mechanism from micro to macro level, which are discussed in the last section. We also propose the unclarified questions regarding crosslinking mechanisms and potential challenges in crosslinking-targeted therapeutics development.


Subject(s)
Collagen , Neoplasms , Collagen/pharmacology , Extracellular Matrix/pathology , Fibrosis , Humans
6.
Nat Commun ; 10(1): 3491, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375674

ABSTRACT

Despite the wide applications, systematic mechanobiological investigation of 3D porous scaffolds has yet to be performed due to the lack of methodologies for decoupling the complex interplay between structural and mechanical properties. Here, we discover the regulatory effect of cryoprotectants on ice crystal growth and use this property to realize separate control of the scaffold pore size and stiffness. Fibroblasts and macrophages are sensitive to both structural and mechanical properties of the gelatin scaffolds, particularly to pore sizes. Interestingly, macrophages within smaller and softer pores exhibit pro-inflammatory phenotype, whereas anti-inflammatory phenotype is induced by larger and stiffer pores. The structure-regulated cellular mechano-responsiveness is attributed to the physical confinement caused by pores or osmotic pressure. Finally, in vivo stimulation of endogenous fibroblasts and macrophages by implanted scaffolds produce mechano-responses similar to the corresponding cells in vitro, indicating that the physical properties of scaffolds can be leveraged to modulate tissue regeneration.


Subject(s)
Biocompatible Materials/chemistry , Cryoprotective Agents/pharmacology , Porosity/drug effects , Tissue Scaffolds/chemistry , Wound Healing , Animals , Cell Proliferation , Disease Models, Animal , Fibroblasts , Gelatin/chemistry , Gelatin/drug effects , Humans , Macrophages , Male , Materials Testing/methods , Mice , Primary Cell Culture , Regenerative Medicine/methods , Skin/injuries , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL