Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Polymers (Basel) ; 14(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35956698

ABSTRACT

In recent years, composites consisting of polymers and cellulosic materials have attracted increasing research attention. Polypropylene (PP) is among the most common polymer types found in excavated waste from landfills. Moreover, wood waste generated from wood products manufacturing such as sawdust (SD) offers a good potential for the fabrication of composite materials, and it is readily available in the environment. In this paper, wood polymer composites (WPC) consisting of recycled PP (rPP) and (SD) were prepared and characterised. A range of mechanical properties, including tensile strength, flexural properties, creep and hardness were studied, along with morphology, thermal properties, water degradation and contact angle. The results showed that the mechanical and thermal properties of rPP increased with an increase in 40 wt% of the SD content. Furthermore, the SD content significantly influenced the water uptake of the composites. Time-temperature superposition (TTS) was applied to predict the long-term mechanical performance from short-term accelerated creep tests at a range of elevated temperatures. The short-term creep test showed efficient homogeneity between the fillers and matrix with increasing temperature. The produced wood polymer composites displayed a comparable physical property to virgin polymer and wood and could potentially be used for various structural materials.

2.
Bioresour Technol ; 292: 121975, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31445238

ABSTRACT

Cellulosic ethanol could play a major role in the upcoming circular-economy once the process complexity, low carbohydrate extraction yields and high costs are resolved. To this purpose, different steam-treatment severity factors were employed on whole sweet sorghum biomass, followed by the delignification and hydrolysis of resulted lignocellulose fibers. A modified ASTM International (American Society for Testing and Material) standard cellulose hydrolysis approach as well as a newly developed SACH (Sulfuric Acid Cellulose Hydrolysis) process were used, recovering up to 24.3 wt% of cellulosic carbohydrates. This amounted to a total extractable and constitutive carbohydrate recovery of 51.7 wt% (dry basis) when a mild steam-treatment of whole sorghum biomass and the SACH cellulose hydrolysis were employed. An ethanol potential of 6378 L/ha/year was determined, comparable to values obtained from biomass such as sugarcane in warmer climates, supporting thus the opportunity of implementing this novel approach on a wider scale.


Subject(s)
Sorghum , Steam , Biomass , Ethanol , Fermentation , Hydrolysis , Lignin
3.
Comput Methods Programs Biomed ; 181: 104825, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30612785

ABSTRACT

OBJECTIVE: To identify common temporal evolution profiles in biological data and propose a semi-automated method to these patterns in a clinical data warehouse (CDW). MATERIALS AND METHODS: We leveraged the CDW of the European Hospital Georges Pompidou and tracked the evolution of 192 biological parameters over a period of 17 years (for 445,000 + patients, and 131 million laboratory test results). RESULTS: We identified three common profiles of evolution: discretization, breakpoints, and trends. We developed computational and statistical methods to identify these profiles in the CDW. Overall, of the 192 observed biological parameters (87,814,136 values), 135 presented at least one evolution. We identified breakpoints in 30 distinct parameters, discretizations in 32, and trends in 79. DISCUSSION AND CONCLUSION: our method allowed the identification of several temporal events in the data. Considering the distribution over time of these events, we identified probable causes for the observed profiles: instruments or software upgrades and changes in computation formulas. We evaluated the potential impact for data reuse. Finally, we formulated recommendations to enable safe use and sharing of biological data collection to limit the impact of data evolution in retrospective and federated studies (e.g. the annotation of laboratory parameters presenting breakpoints or trends).


Subject(s)
Clinical Laboratory Services/statistics & numerical data , Data Accuracy , Data Warehousing/methods , Electronic Health Records/statistics & numerical data , Information Storage and Retrieval , Medical Informatics/methods , Automation , Database Management Systems , France/epidemiology , Humans , Pattern Recognition, Automated , Reproducibility of Results , Retrospective Studies , Software , Systems Integration , Time Factors
4.
Front Chem ; 6: 117, 2018.
Article in English | MEDLINE | ID: mdl-29740574

ABSTRACT

Cellulose hydrolysis processes using concentrated acid usually involve two steps in order to obtain high glucose yields. The first step (pre-treatment) decrystallizes cellulose while the second step (post-hydrolysis) converts the amorphous cellulose to glucose. The two-step process developed by the Industrial Research Chair on Cellulosic Ethanol and Biocommodities and its industrial partner CRB Innovations Inc., includes an intermediate partial neutralization step, whose purpose is to decrease the amount of dilution water to be added for post-hydrolysis thus minimizing handling costs. In this work, the effect of several operating parameters on the glucose yield of this process was investigated using triticale cellulose and the best conditions yielding fermentable glucose (close to 100%) were determined. These conditions involve pre-treating cellulose at 30°C using 72 wt% H2SO4 with a H2SO4/dry cellulose mass ratio of 36 over 2 h, followed by a partial neutralization using 20 wt% NaOH at an H+/OH- molar ratio of 2.3-2.5 and a post-hydrolysis at 121°C for 10 min. HIGHLIGHTS Influence of operating parameters on the glucose yield have been investigated.Conditions for producing cellulosic glucose with yields close to 100% have been identified.

5.
Syst Rev ; 2: 97, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24199894

ABSTRACT

BACKGROUND: Google Translate offers free Web-based translation, but it is unknown whether its translation accuracy is sufficient to use in systematic reviews to mitigate concerns about language bias. METHODS: We compared data extraction from non-English language studies with extraction from translations by Google Translate of 10 studies in each of five languages (Chinese, French, German, Japanese and Spanish). Fluent speakers double-extracted original-language articles. Researchers who did not speak the given language double-extracted translated articles along with 10 additional English language trials. Using the original language extractions as a gold standard, we estimated the probability and odds ratio of correctly extracting items from translated articles compared with English, adjusting for reviewer and language. RESULTS: Translation required about 30 minutes per article and extraction of translated articles required additional extraction time. The likelihood of correct extractions was greater for study design and intervention domain items than for outcome descriptions and, particularly, study results. Translated Spanish articles yielded the highest percentage of items (93%) that were correctly extracted more than half the time (followed by German and Japanese 89%, French 85%, and Chinese 78%) but Chinese articles yielded the highest percentage of items (41%) that were correctly extracted >98% of the time (followed by Spanish 30%, French 26%, German 22%, and Japanese 19%). In general, extractors' confidence in translations was not associated with their accuracy. CONCLUSIONS: Translation by Google Translate generally required few resources. Based on our analysis of translations from five languages, using machine translation has the potential to reduce language bias in systematic reviews; however, pending additional empirical data, reviewers should be cautious about using translated data. There remains a trade-off between completeness of systematic reviews (including all available studies) and risk of error (due to poor translation).


Subject(s)
Electronic Data Processing , Language , Review Literature as Topic , Translating , Humans , Internet , Natural Language Processing , Randomized Controlled Trials as Topic , Time and Motion Studies , Translations
SELECTION OF CITATIONS
SEARCH DETAIL
...