Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 12: 625585, 2021.
Article in English | MEDLINE | ID: mdl-34046019

ABSTRACT

Three out of the seven ribosomal RNA operons in Escherichia coli end in dual terminator structures. Between the two terminators of each operon is a short sequence that we report here to be an sRNA gene, transcribed as part of the ribosomal RNA primary transcript by read-through of the first terminator. The sRNA genes (rrA, rrB and rrF) from the three operons (rrnA, rrnB and rrnD) are more than 98% identical, and pull-down experiments show that their transcripts interact with Hfq and CsrA. Deletion of rrA, B, F, as well as overexpression of rrB, only modestly affect known CsrA-regulated phenotypes like biofilm formation, pgaA translation and glgC translation, and the role of the sRNAs in vivo may not yet be fully understood. Since RrA, B, F are short-lived and transcribed along with the ribosomal RNA components, their concentration reflect growth-rate regulation at the ribosomal RNA promoters and they could function to fine-tune other growth-phase-dependent processes in the cell. The primary and secondary structure of these small RNAs are conserved among species belonging to different genera of Enterobacteriales.

2.
Nucleic Acids Res ; 45(2): 793-804, 2017 01 25.
Article in English | MEDLINE | ID: mdl-27903898

ABSTRACT

Due to its long half-life compared to messenger RNA, bacterial transfer RNA is known as stable RNA. Here, we show that tRNAs become highly unstable as part of Escherichia coli's response to amino acid starvation. Degradation of the majority of cellular tRNA occurs within twenty minutes of the onset of starvation for each of several amino acids. Both the non-cognate and cognate tRNA for the amino acid that the cell is starving for are degraded, and both charged and uncharged tRNA species are affected. The alarmone ppGpp orchestrates the stringent response to amino acid starvation. However, tRNA degradation occurs in a ppGpp-independent manner, as it occurs with similar kinetics in a relaxed mutant. Further, we also observe rapid tRNA degradation in response to rifampicin treatment, which does not induce the stringent response. We propose a unifying model for these observations, in which the surplus tRNA is degraded whenever the demand for protein synthesis is reduced. Thus, the tRNA pool is a highly regulated, dynamic entity. We propose that degradation of surplus tRNA could function to reduce mistranslation in the stressed cell, because it would reduce competition between cognate and near-cognate charged tRNAs at the ribosomal A-site.


Subject(s)
Amino Acids/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , RNA, Transfer/genetics , Models, Biological , Protein Biosynthesis , RNA Stability , RNA, Messenger , RNA, Transfer/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL