Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Cell Sci ; 137(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38525600

ABSTRACT

In neurons, the microtubule (MT) cytoskeleton forms the basis for long-distance protein transport from the cell body into and out of dendrites and axons. To maintain neuronal polarity, the axon initial segment (AIS) serves as a physical barrier, separating the axon from the somatodendritic compartment and acting as a filter for axonal cargo. Selective trafficking is further instructed by axonal enrichment of MT post-translational modifications, which affect MT dynamics and the activity of motor proteins. Here, we compared two knockout mouse lines lacking the respective enzymes for MT tyrosination and detyrosination, and found that both knockouts led to a shortening of the AIS. Neurons from both lines also showed an increased immobile fraction of endolysosomes present in the axon, whereas mobile organelles displayed shortened run distances in the retrograde direction. Overall, our results highlight the importance of maintaining the balance of tyrosinated and detyrosinated MTs for proper AIS length and axonal transport processes.


Subject(s)
Axonal Transport , Lysosomes , Mice, Knockout , Microtubules , Tyrosine , Animals , Microtubules/metabolism , Tyrosine/metabolism , Lysosomes/metabolism , Mice , Axons/metabolism , Endosomes/metabolism , Neurons/metabolism
2.
Cell Rep ; 42(7): 112743, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37418322

ABSTRACT

Homeostatic synaptic plasticity adjusts the strength of synapses to restrain neuronal activity within a physiological range. Postsynaptic guanylate kinase-associated protein (GKAP) controls the bidirectional synaptic scaling of AMPA receptors (AMPARs); however, mechanisms by which chronic activity triggers cytoskeletal remodeling to downscale synaptic transmission are barely understood. Here, we report that the microtubule-dependent kinesin motor Kif21b binds GKAP and likewise is located in dendritic spines in a myosin Va- and neuronal-activity-dependent manner. Kif21b depletion unexpectedly alters actin dynamics in spines, and adaptation of actin turnover following chronic activity is lost in Kif21b-knockout neurons. Consistent with a role of the kinesin in regulating actin dynamics, Kif21b overexpression promotes actin polymerization. Moreover, Kif21b controls GKAP removal from spines and the decrease of GluA2-containing AMPARs from the neuronal surface, thereby inducing homeostatic synaptic downscaling. Our data highlight a critical role of Kif21b at the synaptic actin cytoskeleton underlying homeostatic scaling of neuronal firing.


Subject(s)
Actins , Kinesins , Actins/metabolism , Kinesins/metabolism , Neurons/metabolism , Neuronal Plasticity/physiology , Synapses/metabolism , Myosins/metabolism , Dendritic Spines/metabolism
3.
Trends Neurosci ; 46(1): 32-44, 2023 01.
Article in English | MEDLINE | ID: mdl-36428191

ABSTRACT

The heterogeneity of the endoplasmic reticulum (ER) makes it a versatile platform for a broad range of homeostatic processes, ranging from calcium regulation to synthesis and trafficking of proteins and lipids. It is not surprising that neurons use this organelle to fine-tune synaptic properties and thereby provide specificity to synaptic inputs. In this review, we discuss the mechanisms that enable activity-dependent ER recruitment into dendritic spines, with a focus on molecular mechanisms that mediate transport and retention of the ER in spines. The role of calcium signaling in spine ER, synaptopodin 'tagging' of active synapses, and the formation of the spine apparatus (SA) are highlighted. Finally, we discuss the role of liquid-liquid phase separation as a possible driving force in these processes.


Subject(s)
Endoplasmic Reticulum , Hippocampus , Humans , Hippocampus/physiology , Neurons/metabolism , Dendritic Spines/metabolism , Synapses/physiology , Calcium/metabolism
4.
EMBO J ; 41(4): e106523, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34935159

ABSTRACT

Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca2+ ) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin-based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca2+ sensor caldendrin, a brain-specific homolog of the well-known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V-dependent pathway. We propose that caldendrin transforms myosin into a stationary F-actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines.


Subject(s)
Calcium-Binding Proteins/metabolism , Dendritic Spines/metabolism , Endoplasmic Reticulum/metabolism , Myosin Type V/metabolism , Actins/metabolism , Animals , Calcium-Binding Proteins/genetics , Calmodulin/metabolism , Endoplasmic Reticulum, Smooth/metabolism , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Mass Spectrometry , Mice, Knockout , Myosin Type V/genetics , Protein Interaction Domains and Motifs , Rats, Wistar
5.
Front Cell Dev Biol ; 9: 612518, 2021.
Article in English | MEDLINE | ID: mdl-33968920

ABSTRACT

Although a rare disease, neuroblastoma accounts for the highest proportion of childhood cancer deaths. There is a lack of recurrent somatic mutations in neuroblastoma embryonal tumours, suggesting a possible role for epigenetic alterations in driving this cancer. While an increasing number of reports suggest an association of MYCN with epigenetic machinery, the mechanisms of these interactions are poorly understood in the neuroblastoma setting. Utilising chemo-genomic approaches we revealed global MYCN-epigenetic interactions and identified numerous epigenetic proteins as MYCN targets. The epigenetic regulators HDAC2, CBX8 and CBP (CREBBP) were all MYCN target genes and also putative MYCN interactors. MYCN-related epigenetic genes included SMARCs, HDACs, SMYDs, BRDs and CREBBP. Expression levels of the majority of MYCN-related epigenetic genes showed predictive ability for neuroblastoma patient outcome. Furthermore, a compound library screen targeting epigenetic proteins revealed broad susceptibility of neuroblastoma cells to all classes of epigenetic regulators, belonging to families of bromodomains, HDACs, HATs, histone methyltransferases, DNA methyltransferases and lysin demethylases. Ninety-six percent of the compounds reduced MYCN-amplified neuroblastoma cell viability. We show that the C646 (CBP-bromodomain targeting compound) exhibits switch-like temporal and dose response behaviour and is effective at reducing neuroblastoma viability. Responsiveness correlates with MYCN expression, with MYCN-amplified cells being more susceptible to C646 treatment. Thus, exploiting the broad vulnerability of neuroblastoma cells to epigenetic targeting compounds represents an exciting strategy in neuroblastoma treatment, particularly for high-risk MYCN-amplified tumours.

6.
Brain Commun ; 2(2): fcaa086, 2020.
Article in English | MEDLINE | ID: mdl-33094279

ABSTRACT

Regulation of actin cytoskeleton dynamics in dendritic spines is crucial for learning and memory formation. Hence, defects in the actin cytoskeleton pathways are a biological trait of several brain diseases, including Alzheimer's disease. Here, we describe a novel synaptic mechanism governed by the cyclase-associated protein 2, which is required for structural plasticity phenomena and completely disrupted in Alzheimer's disease. We report that the formation of cyclase-associated protein 2 dimers through its Cys32 is important for cyclase-associated protein 2 binding to cofilin and for actin turnover. The Cys32-dependent cyclase-associated protein 2 homodimerization and association to cofilin are triggered by long-term potentiation and are required for long-term potentiation-induced cofilin translocation into spines, spine remodelling and the potentiation of synaptic transmission. This mechanism is specifically affected in the hippocampus, but not in the superior frontal gyrus, of both Alzheimer's disease patients and APP/PS1 mice, where cyclase-associated protein 2 is down-regulated and cyclase-associated protein 2 dimer synaptic levels are reduced. Notably, cyclase-associated protein 2 levels in the cerebrospinal fluid are significantly increased in Alzheimer's disease patients but not in subjects affected by frontotemporal dementia. In Alzheimer's disease hippocampi, cofilin association to cyclase-associated protein 2 dimer/monomer is altered and cofilin is aberrantly localized in spines. Taken together, these results provide novel insights into structural plasticity mechanisms that are defective in Alzheimer's disease.

7.
J Neurosci ; 40(9): 1819-1833, 2020 02 26.
Article in English | MEDLINE | ID: mdl-31964717

ABSTRACT

Dendritic arborization is highly regulated and requires tight control of dendritic growth, branching, cytoskeletal dynamics, and ion channel expression to ensure proper function. Abnormal dendritic development can result in altered network connectivity, which has been linked to neurodevelopmental disorders, including autism spectrum disorders (ASDs). How neuronal growth control programs tune dendritic arborization to ensure function is still not fully understood. Using Drosophila dendritic arborization (da) neurons as a model, we identified the conserved Ste20-like kinase Tao as a negative regulator of dendritic arborization. We show that Tao kinase activity regulates cytoskeletal dynamics and sensory channel localization required for proper sensory function in both male and female flies. We further provide evidence for functional conservation of Tao kinase, showing that its ASD-linked human ortholog, Tao kinase 2 (Taok2), could replace Drosophila Tao and rescue dendritic branching, dynamic microtubule alterations, and behavioral defects. However, several ASD-linked Taok2 variants displayed impaired rescue activity, suggesting that Tao/Taok2 mutations can disrupt sensory neuron development and function. Consistently, we show that Tao kinase activity is required in developing and as well as adult stages for maintaining normal dendritic arborization and sensory function to regulate escape and social behavior. Our data suggest an important role for Tao kinase signaling in cytoskeletal organization to maintain proper dendritic arborization and sensory function, providing a strong link between developmental sensory aberrations and behavioral abnormalities relevant for Taok2-dependent ASDs.SIGNIFICANCE STATEMENT Autism spectrum disorders (ASDs) are linked to abnormal dendritic arbors. However, the mechanisms of how dendritic arbors develop to promote functional and proper behavior are unclear. We identified Drosophila Tao kinase, the ortholog of the ASD risk gene Taok2, as a regulator of dendritic arborization in sensory neurons. We show that Tao kinase regulates cytoskeletal dynamics, controls sensory ion channel localization, and is required to maintain somatosensory function in vivo Interestingly, ASD-linked human Taok2 mutations rendered it nonfunctional, whereas its WT form could restore neuronal morphology and function in Drosophila lacking endogenous Tao. Our findings provide evidence for a conserved role of Tao kinase in dendritic development and function of sensory neurons, suggesting that aberrant sensory function might be a common feature of ASDs.


Subject(s)
Cytoskeleton/physiology , Dendrites/physiology , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/physiology , Sensation/physiology , Actins/metabolism , Animals , Animals, Genetically Modified , Cytoskeleton/ultrastructure , Dendrites/ultrastructure , Drosophila , Escape Reaction , Female , Humans , Male , Mechanoreceptors/physiology , Mutation/genetics , Social Behavior
8.
J Cell Sci ; 132(16)2019 08 22.
Article in English | MEDLINE | ID: mdl-31371487

ABSTRACT

The spine apparatus (SA) is an endoplasmic reticulum-related organelle that is present in a subset of dendritic spines in cortical and pyramidal neurons, and plays an important role in Ca2+ homeostasis and dendritic spine plasticity. The protein synaptopodin is essential for the formation of the SA and is widely used as a maker for this organelle. However, it is still unclear which factors contribute to its localization at selected synapses, and how it triggers local SA formation. In this study, we characterized development, localization and mobility of synaptopodin clusters in hippocampal primary neurons, as well as the molecular dynamics within these clusters. Interestingly, synaptopodin at the shaft-associated clusters is less dynamic than at spinous clusters. We identify the actin-based motor proteins myosin V (herein referring to both the myosin Va and Vb forms) and VI as novel interaction partners of synaptopodin, and demonstrate that myosin V is important for the formation and/or maintenance of the SA. We found no evidence of active microtubule-based transport of synaptopodin. Instead, new clusters emerge inside spines, which we interpret as the SA being assembled on-site.


Subject(s)
Dendrites/metabolism , Hippocampus/metabolism , Microfilament Proteins/metabolism , Myosin Type V/metabolism , Animals , Dendrites/genetics , Female , Hippocampus/cytology , Mice , Microfilament Proteins/genetics , Myosin Type V/genetics , Rats , Rats, Wistar
9.
EMBO J ; 38(15): e101183, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31267565

ABSTRACT

Organelle positioning within neurites is required for proper neuronal function. In dendrites, with their complex cytoskeletal organization, transport of organelles is guided by local specializations of the microtubule and actin cytoskeleton, and by coordinated activity of different motor proteins. Here, we focus on the actin cytoskeleton in the dendritic shaft and describe dense structures consisting of longitudinal and branched actin filaments. These actin patches are devoid of microtubules and are frequently located at the base of spines, or form an actin mesh around excitatory shaft synapses. Using lysosomes as an example, we demonstrate that the presence of actin patches has a strong impact on dendritic organelle transport, as lysosomes frequently stall at these locations. We provide mechanistic insights on this pausing behavior, demonstrating that actin patches form a physical barrier for kinesin-driven cargo. In addition, we identify myosin Va as an active tether which mediates long-term stalling. This correlation between the presence of actin meshes and halting of organelles could be a generalized principle by which synapses control organelle trafficking.


Subject(s)
Actins/metabolism , Dendrites/metabolism , Lysosomes/metabolism , Synapses/metabolism , Animals , Biological Transport , Cells, Cultured , Glutamic Acid/metabolism , Kinesins/metabolism , Male , Microtubules/metabolism , Rats
10.
Neuron ; 97(5): 1110-1125.e14, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29478916

ABSTRACT

Compartmentalization of calcium-dependent plasticity allows for rapid actin remodeling in dendritic spines. However, molecular mechanisms for the spatio-temporal regulation of filamentous actin (F-actin) dynamics by spinous Ca2+-transients are still poorly defined. We show that the postsynaptic Ca2+ sensor caldendrin orchestrates nano-domain actin dynamics that are essential for actin remodeling in the early phase of long-term potentiation (LTP). Steep elevation in spinous [Ca2+]i disrupts an intramolecular interaction of caldendrin and allows cortactin binding. The fast on and slow off rate of this interaction keeps cortactin in an active conformation, and protects F-actin at the spine base against cofilin-induced severing. Caldendrin gene knockout results in higher synaptic actin turnover, altered nanoscale organization of spinous F-actin, defects in structural spine plasticity, LTP, and hippocampus-dependent learning. Collectively, the data indicate that caldendrin-cortactin directly couple [Ca2+]i to preserve a minimal F-actin pool that is required for actin remodeling in the early phase of LTP.


Subject(s)
Calcium Signaling/physiology , Calcium-Binding Proteins/deficiency , Dendritic Spines/metabolism , Long-Term Potentiation/physiology , Synaptic Potentials/physiology , Animals , COS Cells , Calcium-Binding Proteins/genetics , Cells, Cultured , Chlorocebus aethiops , Dendritic Spines/chemistry , Dendritic Spines/genetics , HEK293 Cells , Hippocampus/chemistry , Hippocampus/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques , Rats , Rats, Wistar
11.
Front Cell Neurosci ; 11: 147, 2017.
Article in English | MEDLINE | ID: mdl-28572759

ABSTRACT

Actin is a versatile and ubiquitous cytoskeletal protein that plays a major role in both the establishment and the maintenance of neuronal polarity. For a long time, the most prominent roles that were attributed to actin in neurons were the movement of growth cones, polarized cargo sorting at the axon initial segment, and the dynamic plasticity of dendritic spines, since those compartments contain large accumulations of actin filaments (F-actin) that can be readily visualized using electron- and fluorescence microscopy. With the development of super-resolution microscopy in the past few years, previously unknown structures of the actin cytoskeleton have been uncovered: a periodic lattice consisting of actin and spectrin seems to pervade not only the whole axon, but also dendrites and even the necks of dendritic spines. Apart from that striking feature, patches of F-actin and deep actin filament bundles have been described along the lengths of neurites. So far, research has been focused on the specific roles of actin in the axon, while it is becoming more and more apparent that in the dendrite, actin is not only confined to dendritic spines, but serves many additional and important functions. In this review, we focus on recent developments regarding the role of actin in dendrite morphology, the regulation of actin dynamics by internal and external factors, and the role of F-actin in dendritic protein trafficking.

12.
Genome Med ; 9(1): 15, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28187790

ABSTRACT

BACKGROUND: Retinoid therapy is widely employed in clinical oncology to differentiate malignant cells into their more benign counterparts. However, certain high-risk cohorts, such as patients with MYCN-amplified neuroblastoma, are innately resistant to retinoid therapy. Therefore, we employed a precision medicine approach to globally profile the retinoid signalling response and to determine how an excess of cellular MYCN antagonises these signalling events to prevent differentiation and confer resistance. METHODS: We applied RNA sequencing (RNA-seq) and interaction proteomics coupled with network-based systems level analysis to identify targetable vulnerabilities of MYCN-mediated retinoid resistance. We altered MYCN expression levels in a MYCN-inducible neuroblastoma cell line to facilitate or block retinoic acid (RA)-mediated neuronal differentiation. The relevance of differentially expressed genes and transcriptional regulators for neuroblastoma outcome were then confirmed using existing patient microarray datasets. RESULTS: We determined the signalling networks through which RA mediates neuroblastoma differentiation and the inhibitory perturbations to these networks upon MYCN overexpression. We revealed opposing regulation of RA and MYCN on a number of differentiation-relevant genes, including LMO4, CYP26A1, ASCL1, RET, FZD7 and DKK1. Furthermore, we revealed a broad network of transcriptional regulators involved in regulating retinoid responsiveness, such as Neurotrophin, PI3K, Wnt and MAPK, and epigenetic signalling. Of these regulators, we functionally confirmed that MYCN-driven inhibition of transforming growth factor beta (TGF-ß) signalling is a vulnerable node of the MYCN network and that multiple levels of cross-talk exist between MYCN and TGF-ß. Co-targeting of the retinoic acid and TGF-ß pathways, through RA and kartogenin (KGN; a TGF-ß signalling activating small molecule) combination treatment, induced the loss of viability of MYCN-amplified retinoid-resistant neuroblastoma cells. CONCLUSIONS: Our approach provides a powerful precision oncology tool for identifying the driving signalling networks for malignancies not primarily driven by somatic mutations, such as paediatric cancers. By applying global omics approaches to the signalling networks regulating neuroblastoma differentiation and stemness, we have determined the pathways involved in the MYCN-mediated retinoid resistance, with TGF-ß signalling being a key regulator. These findings revealed a number of combination treatments likely to improve clinical response to retinoid therapy, including co-treatment with retinoids and KGN, which may prove valuable in the treatment of high-risk MYCN-amplified neuroblastoma.


Subject(s)
Anilides/therapeutic use , N-Myc Proto-Oncogene Protein/drug effects , Neuroblastoma/drug therapy , Phthalic Acids/therapeutic use , Signal Transduction , Transforming Growth Factor beta/drug effects , Tretinoin/therapeutic use , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Humans , Neuroblastoma/genetics , Neuroblastoma/metabolism , Precision Medicine , Retinoids/therapeutic use
13.
Oncotarget ; 8(66): 110077-110091, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29299131

ABSTRACT

High expression of the actin bundling protein Fascin increases the malignancy of tumor cells. Here we show that fascin expression is up-regulated in more malignant sub-cell lines of MDA-MB-231 cells as compared to parental cells. Since also parental MDA-MB-231 cells exhibit high fascin levels, increased fascin expression was termed as "hyperexpression". To examine the effect of fascin hyperexpression, fascin was hyperexpressed in parental MDA-MB-231 cells and metastasis was analyzed in NOD scid gamma (NSG) mice. In addition, the effect of fascin mutants with inactive or constitutively active actin bundling activity was examined. Unexpectedly, we found that hyperexpression of both, wildtype (wt) and mutant fascin strongly increased metastasis in vivo, showing that the effect of fascin hyperexpression did not depend on its actin bundling activity. Cellular assays revealed that hyperexpression of wt and mutant fascin increased adhesion of MDA-MB-231 cells while transmigration and proliferation were not affected. Since it has been shown that fascin controls adhesion by directly interacting with microtubules (MTs), we analyzed if fascin hyperexpression affects MT dynamics. We found that at high concentrations fascin significantly increased MT dynamics in cells and in cell-free approaches. In summary our data show that strong expression of fascin in breast cancer cells increases metastasis independent of its actin bundling activity. Thus, it seems that the mechanism of fascin-stimulated metastasis depends on its concentration.

14.
EMBO Rep ; 16(11): 1501-10, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26396231

ABSTRACT

Entry into mitosis is mediated by the phosphorylation of key cell cycle regulators by cyclin-dependent kinase 1 (Cdk1). In Xenopus embryos, the M-phase-promoting activity of Cdk1 is antagonized by protein phosphatase PP2A-B55. Hence, to ensure robust cell cycle transitions, Cdk1 and PP2A-B55 must be regulated so that their activities are mutually exclusive. The mechanism underlying PP2A-B55 inactivation at mitotic entry is well understood: Cdk1-activated Greatwall (Gwl) kinase phosphorylates Ensa/Arpp19, thereby enabling them to bind to and inhibit PP2A-B55. However, the re-activation of PP2A-B55 during mitotic exit, which is essential for cell cycle progression, is less well understood. Here, we identify protein phosphatase PP1 as an essential component of the PP2A-B55 re-activation pathway in Xenopus embryo extracts. PP1 initiates the re-activation of PP2A-B55 by dephosphorylating Gwl. We provide evidence that PP1 targets the auto-phosphorylation site of Gwl, resulting in efficient Gwl inactivation. This step is necessary to facilitate subsequent complete dephosphorylation of Gwl by PP2A-B55. Thus, by identifying PP1 as the phosphatase initiating Gwl inactivation, our study provides the molecular explanation for how Cdk1 inactivation is coupled to PP2A-B55 re-activation at mitotic exit.


Subject(s)
Mitosis , Protein Phosphatase 1/metabolism , Protein Serine-Threonine Kinases/metabolism , Xenopus Proteins/metabolism , Animals , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Mitosis/genetics , Phosphorylation , Protein Phosphatase 1/genetics , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/genetics , Xenopus , Xenopus Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...