Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(19): 16883-16895, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37214724

ABSTRACT

Lectin-glycan interactions are at the heart of a multitude of biological events. Glycans are usually presented in a multivalent manner on the cell surface as part of the so-called glycocalyx, where they interact with other entities. This multivalent presentation allows us to overcome the typical low affinities found for individual glycan-lectin interactions. Indeed, the presentation of glycans may drastically impact their binding by lectins, highly affecting the corresponding binding affinity and even selectivity. In this context, we herein present the study of the interaction of a variety of homo- and heteromultivalent lactose-functionalized glycomacromolecules and their lipid conjugates with two human galectins. We have employed as ligands the glycomacromolecules, as well as liposomes decorated with those structures, to evaluate their interactions in a cell-mimicking environment. Key details of the interaction have been unravelled by NMR experiments, both from the ligand and receptor perspectives, complemented by cryo-electron microscopy methods and molecular dynamics simulations.

2.
Biomacromolecules ; 23(12): 5273-5284, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36398945

ABSTRACT

Glycoconjugates are a versatile class of bioactive molecules that have found application as vaccines and antivirals and in cancer therapy. Their synthesis typically involves elaborate functionalization and use of protecting groups on the carbohydrate component in order to ensure efficient and selective conjugation. Alternatively, non-functionalized, non-protected carbohydrates isolated from biological sources or derived through biotechnological methods can be directly conjugated via N-methyloxyamine groups. In this study, we introduce such N-methyloxyamine groups into a variety of multivalent scaffolds─from small to oligomeric to polymeric scaffolds─making use of solid-phase polymer synthesis to assemble monodisperse sequence-defined macromolecules. These scaffolds are then successfully functionalized with different types of human milk oligosaccharides deriving a library of homo- and heteromultivalent glycoconjugates. Glycomacromolecules presenting oligosaccharide side chains with either α2,3- or α2,6-linked terminal sialic acid are used in a binding study with two types of polyomavirus capsid proteins showing that the multivalent presentation through the N-methyloxyamine-derived scaffolds increases the number of contacts with the protein. Overall, a straightforward route to derive glycoconjugates from complex oligosaccharides with high variability yet control in the multivalent scaffold is presented, and applicability of the derived structures is demonstrated.


Subject(s)
Polyomavirus , Humans , Polyomavirus/chemistry , Capsid Proteins/chemistry , Oligosaccharides/chemistry , Glycosylation , Carbohydrates/chemistry , Glycoconjugates , Macromolecular Substances
3.
Macromol Biosci ; 22(12): e2200358, 2022 12.
Article in English | MEDLINE | ID: mdl-36112275

ABSTRACT

Sialoglycans play a key role in many biological recognition processes and sialylated conjugates of various types have successfully been applied, e.g., as antivirals or in antitumor therapy. A key feature for high affinity binding of such conjugates is the multivalent presentation of sialoglycans which often possess synthetic challenges. Here, the combination is described of solid phase polymer synthesis and enzymatic sialylation yielding 3'-sialyllactose-presenting precision glycomacromolecules. CMP-Neu5Ac synthetase from Neisseria meningitidis (NmCSS) and sialyltransferase from Pasteurella multocida (PmST1) are combined in a one-pot reaction giving access to sequence-defined sialylated macromolecules. Surprisingly, when employing Tris(hydroxymethyl)aminomethane (Tris) as a buffer, formation of significant amounts of α-linked Tris-sialoside is observed as a side reaction. Further exploring and exploiting this unusual sialylation reaction, different neoglycosidic structures are synthesized showing that PmST1 can be used to derive both, sialylation on natural carbohydrates as well as on synthetic hydroxylated scaffolds.


Subject(s)
Oligosaccharides , Pasteurella multocida
4.
Chemistry ; 25(13): 3301-3309, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30431195

ABSTRACT

Precision glycomacromolecules have proven to be important tools for the investigation of multivalent carbohydrate-lectin interactions by presenting multiple glycan epitopes on a highly-defined synthetic scaffold. Herein, we present a new strategy for the versatile assembly of heteromultivalent glycomacromolecules that contain different carbohydrate motifs in proximity within the side chains. A new building block suitable for the solid-phase polymer synthesis of precision glycomacromolecules was developed with a branching point in the side chain that bears a free alkyne and a TIPS-protected alkyne moiety, which enables the subsequent attachment of different carbohydrate motifs by on-resin copper-mediated azide-alkyne cycloaddition reactions. Applying this synthetic strategy, heteromultivalent glycooligomers presenting fragments of histo-blood group antigens and human milk oligosaccharides were synthesized and tested for their binding behavior towards bacterial lectin LecB.


Subject(s)
Biomimetic Materials/chemistry , Blood Group Antigens/chemistry , Carbohydrates/chemistry , Oligosaccharides/chemistry , Solid-Phase Synthesis Techniques/methods , Alkynes/chemical synthesis , Alkynes/chemistry , Azides/chemical synthesis , Azides/chemistry , Biomimetic Materials/chemical synthesis , Carbohydrates/chemical synthesis , Cycloaddition Reaction/methods , Humans , Milk, Human/chemistry , Oligosaccharides/chemical synthesis
5.
RSC Adv ; 9(41): 23484-23497, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-35530592

ABSTRACT

In this work, we present a bottom-up approach for the synthesis of lactose-functionalized glycomacromolecules and glycofunctionalized liposomes and apply these compounds to investigate their effects of multivalent presentation on binding to galectin-3. Step-wise assembly of tailor-made building blocks on solid supports was used to synthesize a series of oligo(amidoamine) scaffolds that were further conjugated to lactose via copper catalyzed 1,3-dipolar cycloaddition. Binding studies with galectin-3 revealed affinities in the micromolar range that increased with increasing carbohydrate valency, and decreased with increasing size and linker flexibility. To further explore their multivalency, selected glycomacromolecules were conjugated to lipids and used in liposomal formulations. Binding studies show a further increase in binding in nanomolar ranges in dependence of both ligand structure and liposomal presentation, demonstrating the power of combining the two approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...