Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters











Publication year range
1.
Biogerontology ; 25(6): 1145-1169, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39162979

ABSTRACT

Oxidative stress has long been postulated to play an essential role in aging mechanisms, and numerous forms of molecular damage associated with oxidative stress have been well documented. However, the extent to which changes in gene expression in direct response to oxidative stress are related to actual cellular aging, senescence, and age-related functional decline remains unclear. Here, we ask whether H2O2-induced oxidative stress and resulting gene expression alterations in prostate epithelial cells in vitro reveal gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease. While a broad range of significant changes observed in the expression of non-coding transcripts implicated in senescence-related responses, we also note an overrepresentation of gene-splicing events among differentially expressed protein-coding genes induced by H2O2. Additionally, the collective expression of these H2O2-induced DEGs is linked to age-related pathological dysfunction, with their protein products exhibiting a dense network of protein-protein interactions. In contrast, co-expression analysis of available gene expression data reveals a naturally occurring highly coordinated expression of H2O2-induced DEGs in normally aging prostate tissue. Furthermore, we find that oxidative stress-induced DEGs statistically overrepresent well-known senescence-related signatures. Our results show that oxidative stress-induced gene expression in prostate epithelial cells in vitro reveals gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease.


Subject(s)
Aging , Cellular Senescence , Epithelial Cells , Hydrogen Peroxide , Oxidative Stress , Prostate , Male , Humans , Epithelial Cells/metabolism , Prostate/metabolism , Aging/genetics , Aging/metabolism , Cellular Senescence/genetics , Gene Expression Regulation , Gene Expression Profiling/methods
3.
Front Aging Neurosci ; 15: 1162747, 2023.
Article in English | MEDLINE | ID: mdl-37139092

ABSTRACT

Being overweight and obesity are world health problems, with a higher prevalence in women, defined as abnormal or excessive fat accumulation that increases the risk of chronic diseases. Excess energy leads to adipose expansion, generating hypertrophic adipocytes that produce various pro-inflammatory molecules. These molecules cause chronic low-intensity inflammation, affecting the organism's functioning and the central nervous system (CNS), inducing neuroinflammation. The neuroinflammatory response during obesity occurs in different structures of the CNS involved in memory and learning, such as the cortex and the hippocampus. Here we analyzed how obesity-related peripheral inflammation can affect CNS physiology, generating neuroinflammation and promoting cellular senescence establishment. Since some studies have shown an increase in senescent cells during aging, obesity, and neurodegenerative diseases, we proposed that cellular senescence participation may contribute to the cognitive decline in an obesity model of middle-aged female Wistar rats. The inflammatory state of 6 and 13 months-old female Wistar rats fed with a hypercaloric diet was measured in serum and CNS (cortex and hippocampus). Memory was evaluated using the novel object recognition (NOR) test; the presence of senescent markers was also determined. Our data suggest that the systemic inflammation generated by obesity induces a neuroinflammatory state in regions involved in learning and memory, with an increase in senescent markers, thus proposing senescence as a potential participant in the negative consequences of obesity in cognition.

4.
Biogerontology ; 23(5): 587-613, 2022 10.
Article in English | MEDLINE | ID: mdl-35960458

ABSTRACT

Aging is a complex and detrimental process, which disrupts most organs and systems within the organisms. The nervous system is morphologically and functionally affected during normal aging, and oxidative stress has been involved in age-related damage, leading to cognitive decline and neurodegenerative processes. Sulforaphane (SFN) is a hormetin that activates the antioxidant and anti-inflammatory responses. So, we aimed to evaluate if SFN long-term treatment was able to prevent age-associated cognitive decline in adult and old female and male rats. Memory was evaluated in adult (15-month-old), and old (21-month-old) female and male Wistar rats after three months of SFN treatment. Young rats (4-month-old) were used as age controls. The antioxidant response induction, the redox state (GSH/GSSG), and oxidative damage were determined in the brain cortex (Cx) and hippocampus (Hc). Our results showed that SFN restored redox homeostasis in the Cx and Hc of adult rats, thus preventing cognitive decline in both sexes; however, the redox responses were not the same in males and females. Old rats were not able to recover their redox state as adults did, but they had a mild improvement. These results suggest that SFN mainly prevents rather than reverts neural damage; though, there might also be a range of opportunities to use hormetins like SFN, to improve redox modulation in old animals.


Subject(s)
Antioxidants , Cognitive Dysfunction , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Cognitive Dysfunction/prevention & control , Female , Homeostasis , Isothiocyanates , Male , Oxidation-Reduction , Oxidative Stress , Rats , Rats, Wistar , Sulfoxides
5.
Biogerontology ; 23(4): 453-471, 2022 08.
Article in English | MEDLINE | ID: mdl-35781578

ABSTRACT

Senescent cells accumulate within tissues during aging and secrete an array of pro-inflammatory molecules known as senescent-associated secretory phenotype (SASP), which contribute to the appearance and progression of various chronic degenerative diseases. Novel pharmacological approaches aimed at modulating or eliminating senescent cells´ harmful effects have recently emerged: Senolytics are molecules that selectively eliminate senescent cells, while senomorphics modulate or decrease the inflammatory response to specific SASP. So far, the physicochemical, structural, and pharmacological properties that define these two kinds of pharmacological approaches remain unclear. Therefore, the identification and correct choice of molecules, based on their physicochemical, structural, and pharmacological properties, likely to exhibit the desired senotherapeutic activity is crucial for developing effective, selective, and safe senotherapies. Here we compared the physicochemical, structural, and pharmacological properties of 84 senolytics and 79 senomorphics using a chemoinformatic and systems pharmacology approach. We found great physicochemical, structural, and pharmacological similarities between them, also reflected in their cellular responses measured through transcriptome perturbations. The identified similarities between senolytics and senomorphics might explain the dual activity of some of those molecules. These findings will help design and discover new, more effective, and highly selective senotherapeutic agents.


Subject(s)
Cellular Senescence , Senotherapeutics , Cellular Senescence/physiology , Cheminformatics , Chronic Disease , Humans , Network Pharmacology
6.
Arch Gerontol Geriatr ; 102: 104717, 2022.
Article in English | MEDLINE | ID: mdl-35594738

ABSTRACT

Sarcopenia is a syndrome that leads to physical disability and that deteriorates elderly people´s life quality. The etiology of sarcopenia is multifactorial, but mitochondrial dysfunction plays a paramount role in this pathology. Our research group has shown that the combined treatment of metformin (MTF) and exercise has beneficial effects for preventing muscle loss and fat accumulation, by modulating the redox state. To get an insight into the mechanism of the combined treatment, the mitochondrial bioenergetics was studied in the mitochondria isolated from old female Wistar rats quadriceps muscles. The animals were divided into six groups; three performed exercise on a treadmill for 5 days/week for 20 months, and the other three were sedentary. Also, two groups of each were treated with MTF for 6 or 12 months. The rats were euthanized at 24 months. The mitochondria were isolated and supercomplexes formation along with oxygen consumption, ATP synthesis, and ROS generation were evaluated. Our results showed that the combined treatment for 12 months increased the complex I and IV activities associated with the supercomplexes, simultaneously, ATP synthesis increased while ROS production decreased, indicating a tightly coupled mitochondria. The role of exercise plus the MTF treatment against sarcopenia in old muscles is discussed.


Subject(s)
Metformin , Sarcopenia , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Aged , Animals , Energy Metabolism , Female , Humans , Metformin/pharmacology , Metformin/therapeutic use , Mitochondria/metabolism , Mitochondria/pathology , Muscle, Skeletal/physiology , Quadriceps Muscle/pathology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/pharmacology
7.
Front Integr Neurosci ; 16: 798995, 2022.
Article in English | MEDLINE | ID: mdl-35422689

ABSTRACT

Overweight and obesity are now considered a worldwide pandemic and a growing public health problem with severe economic and social consequences. Adipose tissue is an organ with neuroimmune-endocrine functions, which participates in homeostasis. So, adipocyte hypertrophy and hyperplasia induce a state of chronic inflammation that causes changes in the brain and induce neuroinflammation. Studies with obese animal models and obese patients have shown a relationship between diet and cognitive decline, especially working memory and learning deficiencies. Here we analyze how obesity-related peripheral inflammation can affect central nervous system physiology, generating neuroinflammation. Given that the blood-brain barrier is an interface between the periphery and the central nervous system, its altered physiology in obesity may mediate the consequences on various cognitive processes. Finally, several interventions, and the use of natural compounds and exercise to prevent the adverse effects of obesity in the brain are also discussed.

8.
Biogerontology ; 23(1): 21-33, 2022 02.
Article in English | MEDLINE | ID: mdl-35084630

ABSTRACT

Astrocytes, the most predominant cells in the central nervous system (CNS), have well-recognized neuroprotective functions. However, during the CNS aging, astrocytes can become neurotoxic and contribute to chronic inflammation in age-associated brain deterioration and disease. Astrocytes are known to become senescent or reactive due to the exposure to stressful stimuli, in both cases they contribute to an impaired cognitive function through the production of pro-inflammatory mediators. Although both scenarios (senescence and reactive gliosis) have been studied independently, there are no direct studies comparing their secretomes simultaneously in the aging-brain. In this review we discuss the most recent studies in that respect, in order to analyze their simultaneous participation in brain aging.


Subject(s)
Astrocytes , Central Nervous System , Aging/physiology , Gliosis , Humans , Inflammation
9.
Front Aging Neurosci ; 13: 766306, 2021.
Article in English | MEDLINE | ID: mdl-34924995

ABSTRACT

The decline in brain function during aging is one of the most critical health problems nowadays. Although senescent astrocytes have been found in old-age brains and neurodegenerative diseases, their impact on the function of other cerebral cell types is unknown. The aim of this study was to evaluate the effect of senescent astrocytes on the mitochondrial function of a neuron. In order to evaluate neuronal susceptibility to a long and constant senescence-associated secretory phenotype (SASP) exposure, we developed a model by using cellular cocultures in transwell plates. Rat primary cortical astrocytes were seeded in transwell inserts and induced to premature senescence with hydrogen peroxide [stress-induced premature senescence (SIPS)]. Independently, primary rat cortical neurons were seeded at the bottom of transwells. After neuronal 6 days in vitro (DIV), the inserts with SIPS-astrocytes were placed in the chamber and cocultured with neurons for 6 more days. The neuronal viability, the redox state [reduced glutathione/oxidized glutathione (GSH/GSSG)], the mitochondrial morphology, and the proteins and membrane potential were determined. Our results showed that the neuronal mitochondria functionality was altered after being cocultured with senescent astrocytes. In vivo, we found that old animals had diminished mitochondrial oxidative phosphorylation (OXPHOS) proteins, redox state, and senescence markers as compared to young rats, suggesting effects of the senescent astrocytes similar to the ones we observed in vitro. Overall, these results indicate that the microenvironment generated by senescent astrocytes can affect neuronal mitochondria and physiology.

10.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638556

ABSTRACT

Cellular senescence is more than a proliferative arrest in response to various stimuli. Senescent cells (SC) participate in several physiological processes, and their adequate removal is essential to maintain tissue and organism homeostasis. However, SC accumulation in aging and age-related diseases alters the tissue microenvironment leading to deterioration. The immune system clears the SC, but the specific scenarios and mechanisms related to recognizing and eliminating them are unknown. Hence, we aimed to evaluate the existence of three regulatory signals of phagocytic function, CD47, major histocompatibility complex class I (MHC-I), and calreticulin, present in the membrane of SC. Therefore, primary fibroblasts were isolated from CD1 female mice lungs, and stress-induced premature senescence (SIPS) was induced with hydrogen peroxide. Replicative senescence (RS) was used as a second senescent model. Our results revealed a considerable increment of CD47 and MHC-I in RS and SIPS fibroblasts. At the same time, no significant changes were found in calreticulin, suggesting that those signals might be associated with evading immune system recognition and thus averting senescent cells clearance.


Subject(s)
Antigens, CD1/metabolism , CD47 Antigen/metabolism , Cellular Senescence/physiology , Fibroblasts/metabolism , Histocompatibility Antigens Class I/metabolism , Lung/metabolism , Animals , Calbindin 2/metabolism , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , Fibroblasts/cytology , Hydrogen Peroxide/toxicity , Mice , Primary Cell Culture
11.
Oxid Med Cell Longev ; 2021: 5526665, 2021.
Article in English | MEDLINE | ID: mdl-34336096

ABSTRACT

The loss of skeletal muscle mass and strength is known as sarcopenia; it is characterized as a progressive and generalized muscle disorder associated with aging. This deterioration can seriously compromise the elderly's health and reduce their quality of life. In addition to age, there are other factors that induce muscle mass loss, among which are sedentary lifestyle, chronic diseases, inflammation, and obesity. In recent years, a new clinical condition has been observed in older adults that affects their physical capacities and quality of life, which is known as osteosarcopenic obesity (OSO). Osteoporosis, sarcopenia, and obesity coexist in this condition. Physical exercise and nutritional management are the most widely used interventions for the treatment and prevention of sarcopenia. However, in older adults, physical exercise and protein intake do not have the same outcomes observed in younger people. Here, we used a low-intensity exercise routine for a long period of time (LIERLT) in order to delay the OSO appearance related to sedentarism and aging in female Wistar rats. The LIERLT routine consisted of walking at 15 m/min for 30 min, five days a week for 20 months. To evaluate the effects of the LIERLT routine, body composition was determined using DXA-scan, additionally, biochemical parameters, inflammatory profile, oxidative protein damage, redox state, and serum concentration of GDF-11 at different ages were evaluated (4, 8, 12, 18, 22, and 24 months). Our results show that the LIERLT routine delays OSO phenotype in old 24-month-old rats, in a mechanism involving the decrease in the inflammatory state and oxidative stress. GDF-11 was evaluated as a protein related to muscle repair and regeneration; interestingly, rats that perform the LIERLT increased their GDF-11 levels.


Subject(s)
Growth Differentiation Factors/metabolism , Inflammation/physiopathology , Osteoporosis/prevention & control , Oxidative Stress/physiology , Physical Conditioning, Animal/methods , Sarcopenia/prevention & control , Animals , Female , Rats , Rats, Wistar
12.
Oxid Med Cell Longev ; 2021: 5294266, 2021.
Article in English | MEDLINE | ID: mdl-34447486

ABSTRACT

Osteosarcopenic obesity (OSO) is characterized by bone density, mass, and muscle strength loss, in conjunction with adipose tissue increase. OSO impairs physical activity and mobility, provoking autonomy loss; also, it is known that augmenting body fat in the elderly decreases life expectancy. The main factors influencing this health deterioration are the inflammatory environment induced by adipose tissue and its infiltration into muscle tissue, which leads to oxidative stress generation. Currently, there are several treatments to delay OSO, among which exercise training stands out because it improves muscle fiber quality and quantity and decreases adipose tissue. We have recently demonstrated that the combined treatment between moderate exercise and metformin slows sarcopenia's onset by a mechanism that includes adipose reduction and REDOX regulation. On the other hand, tert-butylhydroquinone (tBHQ) is a well-known antioxidant that counteracts oxidative stress. Therefore, to slow down obesity's harmful effects on muscle mass and bone mineral density, we performed different interventions, including combining a Fartlek-type exercise routine with metformin and tBHQ administration, in a model of middle-aged female Wistar rats with obesity induced with a hypercaloric diet. Our results showed that the combined exercise-metformin-tBHQ treatment increased muscle mass and strength, decreased body weight, body mass index, and fat percentage, and improved redox status, thus increasing animal survival.


Subject(s)
Bone Diseases, Metabolic/prevention & control , Hydroquinones/pharmacology , Metformin/pharmacology , Obesity/therapy , Physical Conditioning, Animal , Sarcopenia/prevention & control , Animals , Bone Diseases, Metabolic/etiology , Female , Obesity/complications , Rats , Sarcopenia/etiology
13.
Biogerontology ; 21(6): 787-805, 2020 12.
Article in English | MEDLINE | ID: mdl-32749628

ABSTRACT

Oxidative stress is known to be involved in the etiology of sarcopenia, a progressive loss of muscle mass and force related to elderly incapacity. A successful intervention to prevent this condition has been exercise-based therapy. Metformin (MTF), an anti-diabetic drug with pleiotropic effects, is known to retain redox homeostasis. However, the combined use of MTF with exercise has shown controversial experimental results. Our research group has shown that MTF-treatment does not limit the benefits provided by exercise, probably by inducing a hormetic response. Hence, our aim was to evaluate the effect of exercise in combination with MTF-treatment on the redox state of old female Wistar rats. Animals were divided into six groups; three groups preformed exercise on a treadmill for 5 days/week for 20 months and the other three were sedentary. Also, two groups of each, exercised and sedentary animals were treated with MTF for 6 or 12 months correspondingly, beside the untreated groups. Rats were euthanized at 24 months. Muscular functionality was analyzed as the relation between the lean mass free of bone with respect to the grip strength. Superoxide dismutase, catalase, and glutathione peroxidase content, enzymatic activity and redox state were determined in the gastrocnemius muscle. Our results showed that the exercised group treated with MTF for 12 months presented higher GSH/GSSG rate and high antioxidant scavenging power in contrast to the MTF-treatment for 6 months, where the beneficial effect was less noticeable.


Subject(s)
Antioxidants/metabolism , Metformin , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Catalase/metabolism , Female , Glutathione Peroxidase/metabolism , Metformin/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Oxidative Stress , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
14.
Oxid Med Cell Longev ; 2020: 3123268, 2020.
Article in English | MEDLINE | ID: mdl-32509140

ABSTRACT

Nutritional status, in particular overweight and obesity, as well as sedentarism and high-fat diet consumption, are important risk factors to develop chronic diseases, which have a higher impact on the elderly's health. Therefore, these nutritional problems have become a concern to human healthspan and longevity. The fatty acids obtained thru the diet or due to fatty acid synthesis during obesity accumulate within the body generating toxicity and cell death. Fat is not only stored in adipose tissue, but it can also be stored in skeletal muscle. Palmitic acid (PA) has been reported as one of the most important saturated free fatty acids; it is associated to chronic oxidative stress and increased mitochondrial ROS production causing cell death by apoptosis. In skeletal muscle, palmitate has been associated with various pathophysiological consequences, which lead to muscle deterioration during aging and obesity. Since molecules that modify redox state have been proven to prevent cellular damage by inducing a hormetic response, the aim of this study was to evaluate if tert-butylhydroquinone (tBHQ) could activate an antioxidant hormetic response that would be able to protect L6 myoblasts from palmitate toxic effect. Our results provide evidence that tBHQ is able to protect L6 myoblasts against the toxicity induced by sodium palmitate due to a synergistic activation of different signaling pathways such as Nrf2 and NF-κB.


Subject(s)
Hydroquinones/pharmacology , Mitochondria/metabolism , Myoblasts/drug effects , Oxidative Stress/drug effects , Protective Agents/pharmacology , Aged , Animals , Apoptosis , Cell Line , Hormesis , Humans , Myoblasts/physiology , NF-E2-Related Factor 2/metabolism , Palmitates/toxicity , Rats , Signal Transduction
15.
Brain Behav Immun ; 89: 118-132, 2020 10.
Article in English | MEDLINE | ID: mdl-32485292

ABSTRACT

Sleep loss in the rat increases blood-brain barrier permeability to circulating molecules by disrupting interendothelial tight junctions. Despite the description of the ultrastructure of cerebral microvessels and the evidence of an apparent pericyte detachment from capillary wall in sleep restricted rats the effect of sleep loss on pericytes is unknown. Here we characterized the interactions between pericytes and brain endothelial cells after sleep loss using male Wistar rats. Animals were sleep-restricted 20 h daily with 4 h sleep recovery for 10 days. At the end of the sleep restriction, brain microvessels (MVs) were isolated from cerebral cortex and hippocampus and processed for Western blot and immunocytochemistry to evaluate markers of pericyte-endothelial cell interaction (connexin 43, PDGFR-ß), tight junction proteins, and proinflammatory mediator proteins (MMP9, A2A adenosine receptor, CD73, NFκB). Sleep restriction reduced PDGFR-ß and connexin 43 expression in MVs; in addition, scanning electron microscopy micrographs showed that pericytes were detached from capillary walls, but did not undergo apoptosis (as depicted by a reduced active caspase-3 expression). Sleep restriction also decreased tight junction protein expression in MVs and increased BBB permeability to low- and high-molecular weight tracers in in vivo permeability assays. Those alterations seemed to depend on a low-grade inflammatory status as reflected by the increased expression of phosphorylated NFκB and A2A adenosine receptor in brain endothelial cells from the sleep-restricted rats. Our data show that pericyte-brain endothelial cell interaction is altered by sleep restriction; this evidence is essential to understand the role of sleep in regulating blood-brain barrier function.


Subject(s)
Blood-Brain Barrier , Pericytes , Animals , Brain , Cell Communication , Endothelial Cells , Male , Rats , Rats, Wistar , Sleep , Tight Junctions
16.
Health Qual Life Outcomes ; 18(1): 152, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32450846

ABSTRACT

PURPOSE: Aging research in Mexico has significantly increased in the past decades, however, little is known on health related quality of life (HRQoL) of older adults. The aim of this study was to expand this field by examining HRQL in a representative sample of Jewish older adults in Mexico, and to investigate its association with different factors. METHODS: This was a cross-sectional survey of a random sample of community dwelling Jewish men and women aged 60 years and older. HRQoL was measured using the Short Form Health Survey (SF-36). Bivariate analysis was performed to estimate the association of scores of HRQoL and different characteristics of the study sample and multiple linear regression models were estimated using ordinary least squares (OLS), to explore determinant factors associated to HRQoL in this sample, for the eight domains of the SF-36 sub-scales separately. RESULTS: Two hundred ninety-five older persons were interviewed. Mean age was 72.7 years (SD 7.9), men made up 57% of the sample, 67% were married and 52% reported living with another person, mostly the spouse. Higher HRQoL was associated with higher educational attainment, being married, and having higher social support, while lower HRQoL was associated with being widowed, in worse financial situation, having chronic diseases and being in the oldest age groups. CONCLUSIONS: Findings show that gender, socioeconomic level, educational attainment, marital status as well as social support & community participation are relevant factors influencing HRQoL in our study sample. With respect to the SF-36 subscales, HRQoL of Jewish older adults in Mexico present higher scores than that of adults and older adults previously found in other studies in Mexico. Further studies comparing other characteristics among them could help bring further understanding of these differentiated ageing processes.


Subject(s)
Aging/psychology , Jews/psychology , Quality of Life , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Humans , Independent Living , Linear Models , Male , Mexico , Middle Aged , Qualitative Research , Social Support , Surveys and Questionnaires
17.
CNS Neurol Disord Drug Targets ; 19(2): 148-162, 2020.
Article in English | MEDLINE | ID: mdl-32303175

ABSTRACT

BACKGROUND: Parkinson's Disease (PD) is a common neurodegenerative disorder affecting the dopaminergic (DAergic) system. Replacement therapy is a promising alternative aimed at reconstructing the cytoarchitecture of affected brain regions in PD. Experimental approaches, such as the replacement of DAergic neurons with cells obtained from the Enteric Nervous System (ENS) has yet to be explored. OBJECTIVE: To establish and characterize a cell replacement strategy with ENS Cells (ENSCs) in a PD model in rats. METHODS: Since ENSCs can develop mature DAergic phenotypes, here we cultured undifferentiated cells from the myenteric plexus of newborn rats, establishing that they exhibit multipotential characteristics. These cells were characterized and further implanted in the Substantia nigra pars compacta (SNpc) of adult rats previously lesioned by a retrograde degenerative model produced by intrastriatal injection of 6-Hydroxydopamine (6-OHDA). DAergic markers were assessed in implants to validate their viability and possible differentiation once implanted. RESULTS: Cell cultures were viable, exhibited stem cell features and remained partially undifferentiated until the time of implant. The retrograde lesion induced by 6-OHDA produced DAergic denervation, reducing the number of fibers and cells in the SNpc. Implantation of ENSCs in the SNpc of 6-OHDAlesioned rats was tracked after 5 and 10 days post-implant. During that time, the implant increased selective neuronal and DAergic markers, Including Microtubule-Associated Protein 2 (MAP-2), Dopamine Transporter (DAT), and Tyrosine Hydroxylase (TH). CONCLUSION: Our novel results suggest that ENSCs possess a differentiating, proliferative and restorative potential that may offer therapeutic modalities to attenuate neurodegenerative events with the inherent demise of DAergic neurons.


Subject(s)
Dopaminergic Neurons/metabolism , Neural Stem Cells/transplantation , Parkinson Disease/therapy , Stem Cell Transplantation/methods , Animals , Disease Models, Animal , Dopamine/metabolism , Enteric Nervous System , Male , Oxidopamine/metabolism , Rats , Rats, Sprague-Dawley , Tyrosine 3-Monooxygenase/metabolism
18.
Oxid Med Cell Longev ; 2019: 3428543, 2019.
Article in English | MEDLINE | ID: mdl-31814870

ABSTRACT

Sarcopenia is a syndrome characterized by a progressive and generalized skeletal muscle mass and strength loss, as well as a poor physical performance, which as strongly been associated with aging. Sedentary lifestyle in the elderly contributes to this condition; however, physical activity improves health, reducing morbidity and mortality. Recent studies have shown that metformin (MTF) can also prevent muscle damage promoting muscular performance. To date, there is great controversy if MTF treatment combined with exercise training improves or nullifies the benefits provided by physical activity. This study is aimed at evaluating the effect of long-term moderate exercise combined with MTF treatment on body composition, strength, redox state, and survival rate during the life of female Wistar rats. In this study, rats performed moderate exercise during 20 of their 24 months of life and were treated with MTF for one year or for 6 months, i.e., from 12 to 24 months old and 18 to 24 months old. The body composition (percentage of fat, bone, and lean mass) was determined using a dual-energy X-ray absorption scanner (DXA), and grip strength was determined using a dynamometer. Likewise, medial and tibial nerve somatosensory evoked potentials were evaluated and the redox state was measured by HPLC, calculating the GSH/GSSG ratio in the gastrocnemius muscle. Our results suggest- that the MTF administration, both in the sedentary and the exercise groups, might activate a mechanism that is directly related to the induction of the hormetic response through the redox state modulation. MTF treatment does not eliminate the beneficial effects of exercise throughout life, and although MTF does not increase muscle mass, it increases longevity.


Subject(s)
Metformin/pharmacology , Muscle Strength/drug effects , Physical Conditioning, Animal/methods , Sarcopenia/prevention & control , Age Factors , Animals , Female , Humans , Male , Muscle Strength/physiology , Rats , Rats, Wistar , Sarcopenia/pathology
19.
Gac Med Mex ; 155(3): 276-283, 2019.
Article in English | MEDLINE | ID: mdl-31219465

ABSTRACT

Neurodegenerative diseases are a group of heterogeneous diseases characterized by a gradual, progressive and selective decrease in nervous system functions. The etiology of these pathologies remains unknown; however, mitochondrial function has been proposed as a common factor that could be involved in the establishment of these diseases, owing to the high energy requirement neurons have in order to carry out their physiological functions. Mitochondria are extremely dynamic organelles that can change their morphology and function in response to different physiological stimuli and, for this reason, mitochondrial dynamics have started being studied as one of cell survival main regulators. This event comprises different processes, such as the generation of new mitochondria and their elimination when they are no longer functional, as well as mitochondrial fusion and fission processes and the traffic of these organelles within the cellular environment. All these processes are highly regulated, and their main purpose is optimal functionality of mitochondria and cellular homeostasis.


Las enfermedades neurodegenerativas son un grupo heterogéneo caracterizado por la disminución gradual, progresiva y selectiva de las funciones del sistema nervioso. La etiología de estas patologías aún se desconoce, sin embargo, se ha propuesto que la función mitocondrial pudiese estar participando en el establecimiento de estas enfermedades, debido al alto requerimiento energético que tienen las neuronas para realizar sus funciones fisiológicas. La mitocondria es un organelo dinámico que puede cambiar su morfología y función en respuesta a diferentes estímulos fisiológicos, por ello se ha empezado a estudiar a la dinámica mitocondrial como uno de los principales reguladores de la supervivencia celular. Este evento comprende diferentes procesos como la generación de nuevas mitocondrias y su eliminación cuando ya no son funcionales, así como los procesos de fusión y fisión mitocondrial y el tráfico de estos organelos en el entorno celular. Todos estos procesos son altamente regulados y tienen como finalidad la óptima funcionalidad de la mitocondria y la homeostasis celular.


Subject(s)
Mitochondria/pathology , Neurodegenerative Diseases/physiopathology , Animals , Cell Survival/physiology , Homeostasis , Humans , Neurons/metabolism
20.
Biogerontology ; 20(5): 583-603, 2019 10.
Article in English | MEDLINE | ID: mdl-31187283

ABSTRACT

Humans and other organisms show age-related signs of deterioration, which makes aging an interesting process to study. In the present work, we review the anti-aging evidence of several of the most promising natural compounds. Quercetin, rapamycin, resveratrol, spermidine, curcumin or sulforaphane administration increase longevity and stress resistance in model organisms such as yeasts, nematodes, flies and mice. Even more, rapamycin, resveratrol, and curcumin are currently in preclinical tests on the Interventions Testing Program of the National Institute on Aging due to their encouraging results in model organisms. The potential mechanisms underlying the beneficial effects of these compounds are briefly described.


Subject(s)
Adaptation, Physiological/drug effects , Aging , Biological Products , Longevity , Signal Transduction/drug effects , Adaptation, Physiological/physiology , Aging/drug effects , Aging/physiology , Animals , Biological Products/metabolism , Biological Products/pharmacology , Humans , Longevity/drug effects , Longevity/physiology , Models, Biological , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL