Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
IJU Case Rep ; 5(1): 66-69, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35005478

ABSTRACT

INTRODUCTION: We report a rare case of primary renal leiomyosarcoma with a tumor thrombus in the inferior vena cava. CASE PRESENTATION: A 54-year-old woman presented with right flank pain and abdominal distension. Physical examination findings were unremarkable. Abdominal computed tomography revealed a heterogeneously enhancing right solid renal mass with a thrombus in the renal vein extending into the inferior vena cava. Magnetic resonance imaging demonstrated a renal tumor with a thrombus about 4 cm below the hepatic vein. Chest computed tomography and bone scintigraphy were negative. The patient underwent right radical nephrectomy and vena cava thrombectomy. Histophathologic evaluation of the resected tumor confirmed the diagnosis of leiomyosarcoma. She underwent no adjuvant therapy. Seven months after surgery, the patient died following a 2-month history of multiple pulmonary and hepatic metastases. CONCLUSION: This report highlights the importance of considering the possibility of renal leiomyosarcoma invasion to the inferior vena cava, similar to renal cell carcinoma.

2.
Langmuir ; 33(1): 296-302, 2017 01 10.
Article in English | MEDLINE | ID: mdl-27943677

ABSTRACT

Yolk/shell particles composed of a submicrometer-sized movable core and a silica shell are promising building blocks for novel optical colloidal crystals, because the locations of cores in the shell compartment can be reversibly changed by using external stimuli. Two dimensional arrays of yolk/shell particles incorporating movable cores were prepared by a self-assembly method. The movable cores of colloidal crystals in water could be observed with an optical microscope under application of external electric field. The motions of inner silica cores depended on the electric field strength and frequency and were categorized into three cases: (1) Random Brownian motion, (2) anisotropic motion of cores moving in a direction orthogonal to a field, and (3) suppressed motion fixed in the center of shell compartment. Random Brownian motion of cores was scarcely affected by field strength when a high frequency (in the MHz range) electric field was applied. On the other hand, an increase in field strength at low-frequency fields (kHz) transiently changed the core motion from (1) to (2) and a further increase in field strength changed it from (2) to (3). When the silica core was incorporated in a large void a stronger electric field was needed to suppress its motion than when it was in a small void. The high responsivity to electric fields in a low-frequency range indicated the importance of electric double layer (EDL) interaction between core and inner shell in controlling the core location in yolk/shell colloidal crystals. It was also shown that movable titania cores in yolk/shell particles required a low-frequency field with a high strength to change from the random to anisotropic motion. The result suggested that the electrostatic interaction between EDLs of the silica core and the inner silica wall could be stronger than that between EDLs of the titania core and the silica shell.

3.
Langmuir ; 32(44): 11600-11605, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27731997

ABSTRACT

Golf ball-like particles having a number of dimples on their spherical surfaces were prepared by a combined method of heterocoagulation between hard polymer particles and soft silicone oil droplets, polymerization of the oil droplets, and dissolution of the polymer particles with tetrahydrofuran. In the heterocoagulation, polystyrene (PSt) particles of three different sizes were employed as hard particles. Distribution of dimples formed with small-sized PSt particles was less homogeneous than that with middle-sized PSt particles (MPS). Narrowly dispersed golf ball-like particles with homogeneously distributed dimples were successfully prepared with a high number ratio of MPS to oil droplets. The employment of large-sized PSt particles in the heterocoagulation decreased the number of PSt particles required for the stabilization of the oil droplets, which created polyhedron-like particles having dimples on their surface. Additional experiments in which polymer particles with different surface affinities to the oil droplets were heterocoagulated with the droplets revealed that a high surface affinity of particles to the droplets could deeply embed the polymer particles into the droplets and form dimples with a low contact angle.

4.
Langmuir ; 31(20): 5590-5, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25927488

ABSTRACT

Monodisperse, nonmagnetic, asymmetrical composite dumbbells in a suspension of magnetic nanoparticles (ferrofluid) were aligned by application of an external magnetic field to the ferrofluid. The asymmetrical composite dumbbells were prepared by two-step soap-free emulsion polymerization consisting of the first polymerization to coat spherical silica cores with cross-linked poly(methyl methacrylate) (PMMA) shell and the second polymerization to protrude a polystyrene (PSt) lobe from the core-shell particles. A chain structure of nonmagnetic dumbbells oriented to the applied magnetic field was observed at nanoparticle content of 2.0 vol % and field strengths higher than 1.0 mT. A similar chain structure of the dumbbells was observed under application of alternating electric field at strengths higher than 50 V/mm. Parallel and orthogonally combined applications of the electric and magnetic fields were also conducted to examine independence of the electric and magnetic applications as operational factors in the dumbbell assembling. Dumbbell chains stiffer than those in a single application of external field were formed in the parallel combined application of electric and magnetic fields. The orthogonal combination of the different applied fields could form a magnetically aligned chain structure of the nonmagnetic dumbbells oriented to the electric field. The present work experimentally indicated that the employment of inverse magnetorheological effect for nonmagnetic, anisotropic particles can be a useful method for the simultaneous controls over the orientation and the positon of anisotropic particles in their assembling.

5.
Langmuir ; 31(19): 5306-10, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25918953

ABSTRACT

Controls over the position and orientation of anisotropic particles in their assemblies are intriguing issues for functional colloidal crystals that are switchable with external fields such as electric and magnetic fields. We propose a novel approach for the fabrication of rattle-type colloidal crystals containing an anisotropic, movable core surrounded by a void space that allows rearrangement of the anisotropic core in the assembly. In the fabrication, multilayered core-shell particles composed of a titania core, polystyrene shell, and silica shell were prepared and then heated at 500 °C for 4 h to selectively remove the middle layer of polystyrene. The heating treatment induced deformation of spherical titania cores in the compartment of silica shells, while the void space required for the orientation and relocation of anisotropic core was generated. The rattle particles fabricated were self-assembled by a simple dip-coating to form an arrangement of the spherical yolk/shell particles incorporating an anisotropic core. Brownian motion of the anisotropic cores observed with an optical microscope showed that the assembly of rattle-type particles had the potential to control location and orientation of the anisotropic cores in the shell compartment by application of external fields.

6.
Anal Chem ; 87(9): 4772-80, 2015.
Article in English | MEDLINE | ID: mdl-25839320

ABSTRACT

The dynamic properties of phospholipid (PL) membranes (phase state and phase transition) play crucial roles in biological systems. However, highly sensitive, direct analytical methods that shed light on the nature of lipids and their assemblies have not been developed to date. Here, we describe the analysis of PL-modified Au nanoparticles (Au@PL) using membrane surface-enhanced Raman spectroscopy (MSERS) and report the properties of the self-assembled PL membranes on the Au nanoparticle. The Raman intensity per PL concentration increased by 50-170 times with Au@PL, as compared to large unilamellar vesicles (LUVs) at the same PL concentration. The phase state and phase transition temperature of the PL membrane of Au@PL were investigated by analyzing the Raman peak ratio (R = I2882/I2930). The enhancement at 714 cm(-1) (EF(714)) varied with the hydrocarbon chain length of the PLs and the assembled degree of Au@PLs. In calculation, the EF(714),assembled was estimated to be 111-142 when the distance between AuNPs was 7.0-7.5 nm, which was correlated to the speculative enhancement factor, suggesting that the assembly of the Au@PLs contributed to the MSERS.


Subject(s)
Phospholipids/analysis , Phospholipids/chemistry , Spectrum Analysis, Raman , Gold/chemistry , Metal Nanoparticles/chemistry , Surface Properties
7.
Langmuir ; 30(24): 7244-50, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24878432

ABSTRACT

Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.

8.
Langmuir ; 29(28): 9004-9, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23815588

ABSTRACT

Yolk/shell particles, which were hollow silica particles containing a movable magnetic silica core (MSC), were prepared by removing a middle polystyrene layer from multilayered particles of MSC/polystyrene/silica shell with heat treatment followed by a slight etching with a basic solution. An ac electric field was applied to the suspension of the yolk/shell particles to form pearl chains (1D structure) of yolk/shell particles. Observation with an optical microscope showed that the MSCs in the silica compartment of the pearl chains had a zigzag structure under the electric field. An external magnetic field applied to the suspension could form a novel structure of doublet MSC in the shell compartment of the quasi-pearl chain structure. Application of a magnetic field was also performed for 2D hexagonally close-packed assemblies of the yolk/shell particles, which could two-dimensionally form a doublet structure of MSCs as if they were polarized in the compartment. Switching on/off the magnetic field successfully controlled the positional ordering of cores in the consolidated silica shell.

9.
J Colloid Interface Sci ; 394: 63-8, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23295029

ABSTRACT

Factors for controlling sizes of silica particles formed in the hydrolysis and condensation of silicon alkoxides were examined in batch and semi-batch processes with our model previously proposed. Particle sizes in the particle formation were simulated for buffer systems to reduce time-variation in pH. Effectiveness of the buffer system to suppress time-variation in ionic strength was experimentally verified in a silicon alkoxide concentration range of 0.01-0.1 M. Comparison of experimental particle sizes with calculated ones showed that the addition of electrolytes slightly decreased surface potential of silica particles in both batch and semi-batch processes, and the surface potential values estimated for the semi-batch process were lower than that for batch process. In simulation of the number of particles formed in the processes, the particle number had strong dependences on surface potential and Debye-Hückel parameter. The simulated number of particles formed in semi-batch process was smaller than that in batch process under the same surface potential and Debye-Hückel parameter. The combination of the low surface potential and the small number of particles revealed that the semi-batch process was suitable for producing a small number of particles, which provides enlargement of size range of silica particles formed in the method.

10.
Langmuir ; 28(51): 17642-6, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23194249

ABSTRACT

Inside spaces of emulsion droplets can be used as mini-reactors for material synthesis. The novel application of sol-gel derived silicone oil droplets as mini-reactors was examined for the case of polymerization of styrene (St) and comonomers with the oil-soluble initiator 2,2'-azobis(2,4-dimethylvaleronitrile). Polydimethylsiloxane (PDMS) droplets prepared from dimethylsiloxane were used as the mini-reactors, in which the polymerization of St without comonomers was first conducted. In the polymerization, the St/PDMS volume ratio was varied from 0.025 to 0.10. After the polymerization, each PDMS droplet contained a polystyrene (PSt) particle. The St/PDMS ratio of 0.05 enabled the synthesis of micrometer-sized, spherical PSt particles with low polydispsersity. Copolymerization of St with comonomers having hydrophilic groups deformed the spherical shape of particles to lens-like or disk-like morphologies that were obtained with acrylic acid or sodium 4-styrene sulfonate, respectively. In another copolymerization, with divinylbenzene used as a cross-linker, hemispherical polymer particles were formed. To diversify the particle morphologies further, the proposed mini-reactor synthesis was combined with the recently proposed silicone oil droplet templating method (Ohta et al., 2012). Around the PDMS droplets containing a polymer particle, polymeric shells with a depression were successfully formed with the proposed method. The remaining PDMS oil inside the polymeric shells was extracted with ethanol, which caused hemispherical polymeric bowl-shaped capsules having a protrusion on the inside.

11.
Langmuir ; 28(16): 6546-50, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22458374

ABSTRACT

Assembly and directed orientation of anisotropic particles with an external ac electric field in a range from 1 kHz to 2 MHz were studied for asymmetric composite dumbbells incorporating a silica, titania, or titania/silica (titania:silica = 75:25 vol %) sphere. The asymmetric composite dumbbells, which were composed of a polymethylmethacrylate (PMMA)-coated sphere (core-shell part) and a polystyrene (PSt) lobe, were synthesized with a soap-free emulsion polymerization to prepare PMMA-coated inorganic spheres and another soap-free emulsion polymerization to form a polystyrene (PSt) lobe from the PMMA-coated inorganic spheres. The composite dumbbells dispersed in water were directly observed with optical microscopy. The dumbbells incorporating a silica sphere oriented parallel to an electric field in the whole frequency range and they formed a pearl chain structure at a high frequency of 2 MHz. The titania-incorporated dumbbells formed chain structures, in which they contacted their core-shell parts and oriented perpendicularly to a low-frequency (kHz) field, whereas they oriented parallel to a high-frequency (MHz) field. Since the alignment of dumbbells in the chains depends not only on the interparticle forces but also on the torque that the induced dipoles in the dumbbells experience in the electric field, the orientation of dumbbells perpendicular to the electric field was the case dominated by the interparticle force, whereas the other orientation was the case dominated by the torque. The present experiments show that the incorporation of inorganic dumbbells is an effective way to control the assembled structure and orientation with an electric field.

12.
Colloids Surf B Biointerfaces ; 92: 372-6, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22169474

ABSTRACT

Hollow silica particle was obtained with a vesicle template synthesis in water under ambient conditions in the presence of ammonia. Biomimetic vesicles, liposomes were used, which consisted of a zwitterionic phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and a tiny amount of charged amphiphiles, hexadecylamine (HDA) or dicetylphosphate (DCP). Aggregation of silica occurred for DPPC or cationic DPPC/HDA liposome, whereas well-dispersed hollow silica particle could be obtained for anionic DPPC/DCP liposome. The hollow particle synthesized with the anionic liposome had single-layered and raspberry-like structures. Electrostatic repulsion between anionic vesicles maintained stable dispersion of the as-synthesized particles during the reaction. Formation of the raspberry-like morphology is explained by silica particle precipitation selectively induced around the liposomes under basic conditions due to affinity of silica precursors for the liposomes. Synthesis of well-dispersed hollow silica particle with a raspberry-like morphology is the first report in vesicle template syntheses.


Subject(s)
Liposomes/chemistry , Silicon Dioxide/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Anions , Catalysis , Liposomes/chemical synthesis , Liposomes/ultrastructure , Organophosphates/chemistry , Particle Size , Solutions , Static Electricity , Suspensions
13.
Langmuir ; 27(21): 13302-7, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21936574

ABSTRACT

A novel method is proposed to create asymmetrically nanoparticle-supported, monodisperse composite dumbbells. The method consists of the three steps of double soap-free emulsion polymerizations before and after a heterocoagulation. In the first step, soap-free emulsion polymerization was conducted to cover silica cores with cross-linked poly(methyl methacrylate) (PMMA) shells. Then, positively or negatively charged silica nanoparticles were heterocoagulated with the silica-PMMA core-shell particles. In the heterocoagulations, the nanoparticles surface-modified with a cationic silane coupling agent, 3-aminopropyltriethoxysilane, were used as the positively charged ones, and silica nanoparticles without any treatment were used as the negatively charged ones. In the third step, soap-free polymerizations at different pH values were performed to protrude a polystyrene (PSt) bulge from the core-shell particles supporting the charged silica nanoparticles. In the polymerization, the core-shell particles heterocoagulated with the positively charged silica nanoparticles were aggregated in an acidic condition whereas the silica nanoparticles supported on the core-shell particles were dissolved in a basic condition. For the negatively charged silica nanoparticle, a PSt bulge was successfully protruded from the core-shell particle in acidic and neutral conditions without aggregation of the core-shell particles. The protrusion of the PSt bulge became distinctive when the number of heterocoagulated silica nanoparticles per core-shell particle was increased. Additional heterocoagulation experiments, in which positively or negatively charged magnetite nanoparticles were mixed with the asymmetrically nanoparticle-supported composite dumbbells, confirmed direct exposure of silica nanoparticles to the outer solvent phase.

14.
J Colloid Interface Sci ; 351(2): 580-3, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20797720

ABSTRACT

A methanol oxidation catalyst with improved durability in acidic environments is reported. The catalyst consists of PtRu alloy nanoparticles on a carbon support that were stabilized with a silane-coupling agent. The catalyst was prepared by reducing ions of Pt and Ru in the presence of a carbon support and the silane-coupling agent. The careful choice of preparatory conditions such as the concentration of the silane-coupling agent and solution pH resulted in the preparation of catalyst in which the PtRu nanoparticles were dispersively adsorbed onto the carbon support. The catalytic activity was similar to that of a commercial catalyst and was unchanged after immersion in sulfuric acid solution for 1000 h, suggesting the high durability of the PtRu catalyst for the anode of direct methanol fuel cells.


Subject(s)
Carbon/chemistry , Electric Power Supplies , Methanol/chemistry , Platinum/chemistry , Ruthenium/chemistry , Alloys/chemistry , Catalysis , Oxidation-Reduction , Particle Size , Surface Properties
15.
Langmuir ; 26(10): 7512-5, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20163080

ABSTRACT

A facile one-pot synthesis to produce micrometer-sized silica particles with low polydispersity was examined in a semibatch process where an ethanol solution of tetraethyl orthosilicate (TEOS) was continuously supplied to another ethanol solution of water and ammonia containing an electrolyte of LiCl, NaCl, or KCl. Supply rates of the TEOS solution was ranged with the water and electrolyte concentrations, which indicated that the addition of KCl at a low water concentration was effective to increase size of silica particles in a micrometer range. Highly monodisperse silica particles with an average size of 6.6 microm were successfully produced at 3 mol/m(3) KCl and 5 kmol/m(3) water. The efficiency of KCl addition for producing the large particles is interpreted by the previously proposed nucleation and growth mechanism that expects rapid particle coagulation in early reaction stage for particles which have reduced surface potential by the adsorption of cations with a large ionic radius. It is confirmed from competitive growth reactions that the silica particle growth follows the reaction-limited mechanism even in the semibatch process.


Subject(s)
Lithium Chloride/chemistry , Potassium Chloride/chemistry , Silicon Dioxide/chemical synthesis , Sodium Chloride/chemistry , Ammonia/chemistry , Electrolytes/chemistry , Ethanol/chemistry , Particle Size , Silanes/chemistry , Silicon Dioxide/chemistry , Solutions , Surface Properties , Water/chemistry
16.
Langmuir ; 26(7): 5208-12, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20073531

ABSTRACT

Hollow asymmetrical silica dumbbells containing a movable inner core were fabricated by a template-assisted method. Three different templates were employed for the fabrication of the hollow asymmetrical dumbbells. For the preparation of the first template, silica particles were uniformly covered with a cross-linked polymethylmethacrylate (PMMA) shell and the polymerization of styrene was conducted to induce a protrusion of polystyrene (PSt) from the PMMA shell. Anisotropic colloids composed of silica, PMMA, and PSt were used as templates, coated with a silica shell, and held at 500 degrees C for 2 h to remove the polymer interior components of the template colloid. The heat treatment successfully produced hollow asymmetrical silica dumbbells containing an inner silica core. After being dried, approximately 50% of the inner silica particles that were originally coated with PMMA ended up in the other hollow sphere in which the PSt component existed before heat treatment, indicating that the inner silica particles could pass through the hollow asymmetrical dumbbells' necks and were free to move in the interior. In the preparation of the second and third asymmetrical dumbbell templates, magnetic silica particles and titania particles, respectively, were covered with a PMMA shell to incorporate externally responsive particles into the hollow silica shells as above. The successful syntheses demonstrated the generality of our approach. The passage of the responsive particles through the dumbbell's neck enabled active control of the position of the responsive particles inside the asymmetrical dumbbells by external fields.


Subject(s)
Nanostructures/chemistry , Silicon Dioxide/chemistry , Models, Theoretical , Nanotechnology , Polymethyl Methacrylate/chemistry , Styrene/chemistry
17.
Langmuir ; 26(6): 4207-11, 2010 Mar 16.
Article in English | MEDLINE | ID: mdl-19824685

ABSTRACT

Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.


Subject(s)
Magnetics , Nanoparticles , Silicon Dioxide , Colloids , Microscopy, Electron, Transmission , Particle Size
18.
Langmuir ; 24(17): 9804-8, 2008 Sep 02.
Article in English | MEDLINE | ID: mdl-18652421

ABSTRACT

Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.


Subject(s)
Spectrometry, Fluorescence/methods , Cations , Hydrogen-Ion Concentration , Iron/chemistry , Magnetics , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Particle Size , Polymers/chemistry , Silanes/chemistry , Silicates/chemistry , Silicon Dioxide/chemistry , Surface Properties
19.
Langmuir ; 22(26): 10958-62, 2006 Dec 19.
Article in English | MEDLINE | ID: mdl-17154571

ABSTRACT

A previously proposed method of soap-free emulsion polymerization employing an amphoteric initiator, 2,2'-azobis [N-(2-carboxyethyl)-2-methylpropionamidine] tetrahydrate (VA-057), was extended to synthesize micrometer-sized polystyrene particles with low polydispersity in an acidic region of pH from 3.3 to 4.6. A buffer system of CH3COOH/CH3COONa was used for the adjustment of pH, which was aimed at effective promotion of particle coagulation in early stage of the polymerization. In these experiments, CH3COOH concentration was varied from 20 to 360 mM at a CH3COONa concentration of 10 mM. Polymer particles with an average size of 1.8 microm and low polydispersity were obtained at the CH3COOH concentration of 40 mM for the concentrations of 1.1 M styrene monomer and 10 mM initiator. To more precisely control dispersion stability of particles, experiments in which pH was stepwisely changed during the polymerization were also carried out. This polymerization method could enhance the average size of particles to 2.2 microm while retaining the monodispersity of particles. Furthermore, combination of pH stepwise change and monomer addition during the polymerization could produce particles with an average size of 3.0 microm and low polydispersity.

20.
J Colloid Interface Sci ; 300(1): 253-8, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16631771

ABSTRACT

Entry of direct methanol fuel cells into the market requires anode catalyst with stable activity. This paper presents a novel method for stabilizing the activity by immobilizing silica on the catalytic PtRu nanoparticles. Characterization was performed by STEM-EDX, XRD, and ICP. The silica-immobilized PtRu nanoparticles showed high and stable activity toward methanol oxidation. The activity was maintained for 1000 h in sulfuric acidic solution, while the activity of the catalyst with "bare" PtRu nanoparticles decayed after 100 h, showing high durability of the silica-immobilized PtRu nanoparticles catalyst in quasi-anodic acidic environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...