Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ChemMedChem ; 14(22): 1917-1932, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31659845

ABSTRACT

Retinoic-acid-related orphan receptor γt (RORγt) inverse agonists could be used for the treatment of autoimmune diseases. Previously, we reported a novel quinazolinedione 1 a with a flexible linear linker as a novel RORγt inverse agonist. A U-shaped conformation in the complex structure of 1 a with RORγt protein was confirmed. Further improvement of the pharmacokinetic (PK) profiles was required because of the low drug exposure in mice upon oral administration (mouse AUC of 1 a: 27 ng ⋅ h ⋅ mL-1 at 1 mg ⋅ kg-1 , p.o.). To improve the PK profiles, conformationally constrained U-shaped scaffolds were investigated. As a result, morpholine analogues with improved PK profiles and high potency were successfully identified. The substituent at the N1 position of the quinazoline moiety was also modified, leading to an enhancement of reporter activity. Consequently, compound 43 (N2 -(3-chloro-4-cyanophenyl)-N4 -(3-(cyclopropylmethyl)-1-isopropyl-2,4-dioxo-1,2,3,4-tetrahydroquinazolin-6-yl)morpholine-2,4-dicarboxamide) exhibited improved drug exposure (mouse AUC: 1289 ng ⋅ h ⋅ mL-1 at 1 mg ⋅ kg-1 , p.o.). In addition, suppression of IL-17A gene expression by IL-23 stimulation in a mouse pharmacodynamics model was observed for 43. The conformation of 43 with RORγt protein was also confirmed as U-shape by X-ray co-crystal structure analysis. The key interaction that boosts potency is also discussed.


Subject(s)
Cyclopentanes/pharmacology , Drug Design , Furans/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Administration, Oral , Animals , Crystallography, X-Ray , Cyclopentanes/administration & dosage , Cyclopentanes/chemical synthesis , Fluorescence Resonance Energy Transfer , Furans/administration & dosage , Furans/chemical synthesis , Mice , Models, Molecular , Molecular Conformation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
2.
J Med Chem ; 62(3): 1167-1179, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30652849

ABSTRACT

Retinoic acid receptor-related orphan receptor γt (RORγt) agonists are expected to provide a novel class of immune-activating anticancer drugs via activation of Th17 cells and Tc17 cells. Herein, we describe a novel structure-based functionality switching approach from in house well-optimized RORγt inverse agonists to potent RORγt agonists. We succeeded in the identification of potent RORγt agonist 5 without major chemical structure change. The biochemical response was validated by molecular dynamics simulation studies that showed a helix 12 stabilization effect of RORγt agonists. These results indicate that targeting helix 12 is an attractive and novel medicinal chemistry strategy for switching existing RORγt inverse agonists to agonists.


Subject(s)
Drug Design , Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Animals , High-Throughput Screening Assays , Molecular Dynamics Simulation , Structure-Activity Relationship , Th17 Cells/drug effects
3.
Pharmacology ; 102(5-6): 244-252, 2018.
Article in English | MEDLINE | ID: mdl-30134246

ABSTRACT

BACKGROUND/AIMS: Retinoid-related orphan receptor gamma t (RORγt) is a master regulator of T helper 17 cells that plays a pivotal role in the production of inflammatory cytokines including interleukin (IL)-17. Therefore, RORγt has attracted much attention as a target receptor for the treatment of inflammatory diseases including rheumatoid arthritis, multiple sclerosis, inflammatory bowel diseases, and psoriasis. This study aims to characterize TAK-828F, a potent and selective RORγt inverse agonist. METHODS: The biochemical properties of TAK-828F were evaluated using Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) binding assay, surface plasmon resonance (SPR) biosensor assay, cofactor recruitment assay, reporter assay, and IL-17 expression assay. RESULTS: TR-FRET binding assay and SPR biosensor assay revealed rapid, reversible, and high affinity binding of TAK-828F to RORγt. The cofactor recruitment assay showed that TAK-828F inhibited the recruitment of steroid receptor coactivator-1 to RORγt. Furthermore, TAK-828F inhibited the transcriptional activity of human and mouse RORγt with selectivity against human RORα and RORß. TAK-828F also suppressed IL-17 production in Jurkat cells, overexpressing human RORγt. CONCLUSION: These favorable properties will be of advantage in the evaluation of TAK-828F in clinical studies for inflammatory diseases. Furthermore, these findings demonstrate that TAK-828F could serve as a pharmacological tool for further studies of RORγt and inflammatory diseases.


Subject(s)
Benzofurans/chemistry , Benzofurans/pharmacology , Orphan Nuclear Receptors/agonists , Sulfones/chemistry , Sulfones/pharmacology , Animals , Benzofurans/pharmacokinetics , Chromatography, Affinity , Fluorescence Resonance Energy Transfer , Humans , Interleukin-17/metabolism , Jurkat Cells , Kinetics , Mice , Orphan Nuclear Receptors/metabolism , Protein Binding , Sulfones/pharmacokinetics , Transcriptional Activation
4.
J Med Chem ; 61(7): 2973-2988, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29510038

ABSTRACT

A series of tetrahydronaphthyridine derivatives as novel RORγt inverse agonists were designed and synthesized. We reduced the lipophilicity of tetrahydroisoquinoline compound 1 by replacement of the trimethylsilyl group and SBDD-guided scaffold exchange, which successfully afforded compound 7 with a lower log  D value and tolerable in vitro activity. Consideration of LLE values in the subsequent optimization of the carboxylate tether led to the discovery of [ cis-3-({(5 R)-5-[(7-fluoro-1,1-dimethyl-2,3-dihydro-1 H-inden-5-yl)carbamoyl]-2-methoxy-7,8-dihydro-1,6-naphthyridin-6(5 H)-yl}carbonyl)cyclobutyl]acetic acid, TAK-828F (10), which showed potent RORγt inverse agonistic activity, excellent selectivity against other ROR isoforms and nuclear receptors, and a good pharmacokinetic profile. In animal studies, oral administration of compound 10 exhibited robust and dose-dependent inhibition of IL-17A cytokine expression in a mouse IL23-induced gene expression assay. Furthermore, development of clinical symptoms in a mouse experimental autoimmune encephalomyelitis model was significantly reduced. Compound 10 was selected as a clinical compound for the treatment of Th17-driven autoimmune diseases.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Receptors, Retinoic Acid/agonists , Animals , Autoimmune Diseases/drug therapy , Drug Discovery , Drug Inverse Agonism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Gene Expression/drug effects , Genes, Reporter/drug effects , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/metabolism , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Th17 Cells/immunology
5.
Bioorg Med Chem ; 26(3): 721-736, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29342416

ABSTRACT

Novel small molecules were synthesized and evaluated as retinoic acid receptor-related orphan receptor-gamma t (RORγt) inverse agonists for the treatment of inflammatory and autoimmune diseases. A hit compound, 1, was discovered by high-throughput screening of our compound library. The structure-activity relationship (SAR) study of compound 1 showed that the introduction of a chlorine group at the 3-position of 4-cyanophenyl moiety increased the potency and a 3-methylpentane-1,5-diamide linker is favorable for the activity. The carbazole moiety of 1 was also optimized; a quinazolinedione derivative 18i suppressed the increase of IL-17A mRNA level in the lymph node of a rat model of experimental autoimmune encephalomyelitis (EAE) upon oral administration. These results indicate that the novel quinazolinedione derivatives have great potential as orally available small-molecule RORγt inverse agonists for the treatment of Th17-driven autoimmune diseases. A U-shaped bioactive conformation of this chemotype with RORγt protein was also observed.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Quinazolinones/chemistry , Administration, Oral , Animals , Binding Sites , Drug Inverse Agonism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/veterinary , Female , Humans , Inhibitory Concentration 50 , Interleukin-17/genetics , Interleukin-17/metabolism , Jurkat Cells , Molecular Docking Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , Quinazolinones/administration & dosage , Quinazolinones/metabolism , Quinazolinones/pharmacology , Rats , Rats, Inbred Lew , Solubility , Structure-Activity Relationship , Th17 Cells/cytology , Th17 Cells/drug effects , Th17 Cells/metabolism
6.
Biochem Pharmacol ; 150: 35-45, 2018 04.
Article in English | MEDLINE | ID: mdl-29369782

ABSTRACT

Retinoic acid-related orphan receptor γt (RORγt) is a key master regulator of the differentiation and activation of IL-17 producing CD4+ Th17, CD8+ Tc17 and IL-17/IFN-γ co-producing cells (Th1/17 cells). These cells play critical roles in the pathogenesis of autoimmune diseases such as inflammatory bowel disease and multiple sclerosis. Thus, RORγt is an attractive target for the treatment of these diseases. We discovered TAK-828F, an orally available potent and selective RORγt inverse agonist. The inhibitory effect on the activation and differentiation of Th17 cells by TAK-828F was evaluated in mouse and human primary cells. TAK-828F inhibited IL-17 production from mouse splenocytes and human peripheral blood mononuclear cells dose-dependently at concentrations of 0.01-10 µM without affecting the production of IFN-γ. Additionally, TAK-828F strongly inhibited Th17, Tc17 and Th1/17 cells' differentiation from naive T cells and memory CD4+ T cells at 100 nM without affecting Th1 cells' differentiation. In addition, TAK-828F improved Th17/Treg cells' population ratio by inhibiting Th17 cells' differentiation and up-regulating Treg cells. Furthermore, TAK-828F, at 100 nM, reduced the production of Th17-related cytokines (IL-17, IL-17F and IL-22) without affecting IFN-γ production in whole blood. These results demonstrate that TAK-828F has the potent and selective inhibitory activity against RORγt both in mouse and human cells. Additionally, oral administration of TAK-828F showed promising efficacy in naive T cell transfer mouse colitis model. TAK-828F may provide a novel therapeutic option to treat immune diseases by inhibiting Th17 and Th1/17 cells' differentiation and improving imbalance between Th17 and Treg cells.


Subject(s)
Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Nuclear Receptor Subfamily 1, Group F, Member 3/physiology , Administration, Oral , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Female , Humans , Interleukin-17/antagonists & inhibitors , Interleukin-17/physiology , Lipopolysaccharide Receptors/antagonists & inhibitors , Lipopolysaccharide Receptors/physiology , Mice , Mice, Inbred BALB C , Mice, SCID , Th17 Cells/drug effects , Th17 Cells/physiology
7.
Bioorg Med Chem ; 26(2): 483-500, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29262987

ABSTRACT

A series of novel phenylglycinamides as retinoic acid receptor-related orphan receptor-gamma t (RORγt) inverse agonists were discovered through optimization of a high-throughput screen hit 1. (R)-N-(2-((3,5-Difluoro-4-(trimethylsilyl)phenyl) amino)-1-(4-methoxyphenyl)-2-oxoethyl)-3-hydroxy-N-methylisoxazole-5-carboxamide (22) was identified as one of the best of these compounds. It displayed higher subtype selectivity and specificity over other nuclear receptors and demonstrated in vivo potency to suppress the transcriptional activity of RORγt in a mouse PD (pharmacodynamic) model upon oral administration.


Subject(s)
Drug Discovery , Glycine/analogs & derivatives , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Administration, Oral , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Glycine/administration & dosage , Glycine/chemistry , Glycine/pharmacology , Humans , Jurkat Cells , Male , Mice , Mice, Inbred BALB C , Models, Animal , Models, Molecular , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Structure-Activity Relationship
8.
Bioorg Med Chem ; 26(2): 470-482, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29258712

ABSTRACT

A series of tetrahydroisoquinoline derivatives were designed, synthesized, and evaluated for their potential as novel orally efficacious retinoic acid receptor-related orphan receptor-gamma t (RORγt) inverse agonists for the treatment of Th17-driven autoimmune diseases. We carried out cyclization of the phenylglycinamide core by structure-based drug design and successfully identified a tetrahydroisoquinoline carboxylic acid derivative 14 with good biochemical binding and cellular reporter activity. Interestingly, the combination of a carboxylic acid tether and a central fused bicyclic ring was crucial for optimizing PK properties, and the compound 14 showed significantly improved PK profile. Successive optimization of the carboxylate tether led to the discovery of compound 15 with increased inverse agonistic activity and an excellent PK profile. Oral treatment of mice with compound 15 robustly and dose-dependently inhibited IL-17A production in an IL23-induced gene expression assay.


Subject(s)
Drug Discovery , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Tetrahydroisoquinolines/pharmacology , Administration, Oral , Animals , Crystallography, X-Ray , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Humans , Injections, Intradermal , Interleukin-23/administration & dosage , Interleukin-23/pharmacology , Jurkat Cells , Male , Mice , Mice, Inbred BALB C , Models, Animal , Models, Molecular , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Structure-Activity Relationship , Tetrahydroisoquinolines/administration & dosage , Tetrahydroisoquinolines/chemistry
9.
Bioorg Med Chem ; 24(19): 4675-4691, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27567079

ABSTRACT

A promising lead compound 1 of a benzimidazole series has been identified as a corticotropin-releasing factor 1 (CRF1) receptor antagonist. In this study, we focused on replacement of a 7-alkylamino group of 1, predicted to occupy a large lipophilic pocket of a CRF1 receptor, with an aryl group. During the course of this examination, we established new synthetic approaches to 2,7-diarylaminobenzimidazoles. The novel synthesis of 7-arylaminobenzimidazoles culminated in the identification of compounds exhibiting inhibitory activities comparable to the alkyl analog 1. A representative compound, p-methoxyanilino analog 16g, showed potent CRF binding inhibitory activity against a human CRF1 receptor and human CRF1 receptor antagonistic activity (IC50=27nM, 56nM, respectively). This compound exhibited ex vivo (125)I-Tyr(0) ((125)I-CRF) binding inhibitory activity in mouse frontal cortex, olfactory bulb, and pituitary gland at 20mg/kg after oral administration. In this report, we discuss the structure-activity-relationship of these 7-arylamino-1H-benzimidazoles and their synthetic method.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Amination , Animals , Drug Discovery , Humans , Mice , Models, Molecular , Receptors, Corticotropin-Releasing Hormone/metabolism
10.
J Med Chem ; 57(12): 5226-37, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24884590

ABSTRACT

G-protein-coupled receptor 52 (GPR52) is an orphan Gs-coupled G-protein-coupled receptor. GPR52 inhibits dopamine D2 receptor signaling and activates dopamine D1/N-methyl-d-aspartate receptors via intracellular cAMP accumulation, and therefore, GPR52 agonists may have potential as a novel class of antipsychotics. A series of GPR52 agonists with a bicyclic core was designed to fix the conformation of the phenethyl ether moiety of compounds 2a and 2b. 3-[2-(3-Chloro-5-fluorobenzyl)-1-benzothiophen-7-yl]-N-(2-methoxyethyl)benzamide 7m showed potent activity (pEC50 = 7.53 ± 0.08) and good pharmacokinetic properties. Compound 7m significantly suppressed methamphetamine-induced hyperactivity in mice after oral administration of 3 mg/kg without disturbance of motor function.


Subject(s)
Antipsychotic Agents/chemical synthesis , Benzamides/chemical synthesis , Receptors, G-Protein-Coupled/agonists , Thiophenes/chemical synthesis , Administration, Oral , Animals , Antipsychotic Agents/pharmacokinetics , Antipsychotic Agents/pharmacology , Benzamides/pharmacokinetics , Benzamides/pharmacology , Brain/metabolism , CHO Cells , Cricetulus , Humans , Male , Methamphetamine/pharmacology , Mice, Inbred ICR , Models, Molecular , Motor Activity/drug effects , Structure-Activity Relationship , Thiophenes/pharmacokinetics , Thiophenes/pharmacology
11.
Bioorg Med Chem ; 22(4): 1468-78, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24440478

ABSTRACT

A series of piperazine ureas were designed, synthesized, and evaluated for their potential as novel orally efficacious fatty acid amide hydrolase (FAAH) inhibitors for the treatment of neuropathic and inflammatory pain. We carried out an optimization study of compound 5 to improve its in vitro FAAH inhibitory activity, and identified the 2-pyrimidinylpiperazine derivative 21d with potent inhibitory activity, favorable DMPK profile and brain permeability. Compound 21d showed robust and dose-dependent analgesic efficacy in animal models of both neuropathic and inflammatory pain.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Analgesics/chemical synthesis , Drug Design , Enzyme Inhibitors/chemical synthesis , Piperazines/chemistry , Pyridazines/chemical synthesis , Pyrimidines/chemical synthesis , Urea/analogs & derivatives , Administration, Oral , Amidohydrolases/metabolism , Analgesics/pharmacokinetics , Analgesics/therapeutic use , Animals , Brain/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Half-Life , Male , Mice , Mice, Inbred ICR , Pain/drug therapy , Piperazine , Pyridazines/pharmacokinetics , Pyridazines/therapeutic use , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Rats , Rats, Sprague-Dawley , Urea/pharmacokinetics , Urea/therapeutic use
12.
Bioorg Med Chem ; 21(1): 28-41, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23218778

ABSTRACT

A series of piperazine ureas was designed, synthesized, and evaluated for their potential as novel orally available fatty acid amide hydrolase (FAAH) inhibitors that are therapeutically effective against pain. We carried out an optimization study of the lead compound 3 to improve its DMPK profile as well as in vitro potency. We identified the thiazole compound 60j with potent inhibitory activity, high brain permeability, and good bioavailability. Compound 60j showed a potent and dose-dependent anti-nociceptive effect in the acetic acid-induced writhing test in mice.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Analgesics/chemistry , Analgesics/therapeutic use , Piperazines/chemistry , Piperazines/therapeutic use , Urea/analogs & derivatives , Urea/therapeutic use , Amidohydrolases/metabolism , Analgesics/pharmacokinetics , Animals , Humans , Mice , Molecular Docking Simulation , Pain/drug therapy , Pain/enzymology , Piperazine , Piperazines/pharmacokinetics , Rats , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacokinetics , Thiazoles/therapeutic use , Urea/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL